
Lecture #01: Modern Analytical Database Systems
15-721 Advanced Database Systems (Spring 2024)
https://15721.courses.cs.cmu.edu/spring2024/

Carnegie Mellon University
Prof. Andy Pavlo

1 Background

On-Line Analytical Processing (OLAP) systems to extract new information from existing data sets. His-
torically these workloads were run in a monolithic DBMS that had all of an organization’s data in centralized
managed storage.

1.1 1990s - Data Cubes
DBMSs would maintain multi-dimensional arrays as pre-computed aggregations to speed up queries, often
augmented onto pre-existing operational DBMSs designed to operate on row-oriented data. These material-
ized views would be periodically refreshed and the cubes had to be specified by system administrators ahead
of time.

1.2 2000s - Data Warehouses
Data warehouses are monolithic DBMSs built for the purpose of efficiently executing OLAP workloads.
They are shared-nothing architectures with column-oriented data. Many of these systems started as forks
of Postgres with DBMS-managed storage using proprietary data encoding / formats. They processed data
from operational OLTP databases through ETL (Extract Transform Load) data integration processes.

1.3 2010s - Shared Disk Engines
Shared-disk DBMS architectures relied on third-party distributed storage (object stores) instead of using
custom storage managers. The first generation of these systems managed data files themselves, but newer
systems allow external entities to add data files to the storage without enforcing a schema.

1.4 2020s - Lakehouse Systems
[2] Lakehouse systems are middlware for data lakes that add support for better schema control / version with
transactional CRUD (create, read, update, delete) operations. Changes stored in row-oriented log-structured
files indices which are periodically compacted into read-only columnar files. These Lakehouse systems
make use of three observations.

• People want to execute more than just SQL queries on data, often more procedural code.
• Decoupling data store from DBMS reduces ingest/egress barriers.
• Most data is unstructured / semi-structured (images, video).

2 OLAP DBMS Architectures

The architecture of an OLAP DBMS contains many design choices that make each individual DBMS unique.
However, some design choices and architecture are common / shared among many systems.

https://15721.courses.cs.cmu.edu/spring2024/
https://15721.courses.cs.cmu.edu/spring2024/
https://www.cs.cmu.edu/~pavlo/


Spring 2024 – Lecture #01 Modern Analytical Database Systems

2.1 OLAP DBMS Components
[1] OLAP DBMS components often made into standalone services and libraries. There are many engineer-
ing challenges to make components interoperable + performant. These include system catalogs, intermediate
representations, query optimizers, file formats, access libraries, and execution engines.

2.2 Architecture Overview
• Front-end takes in the user query and parses it into a intermediate representation using the language

parser.
• Planner takes in the intermediate representation from the front-end and uses the binder, rewriter, and

optimizer and cost model to generate a query plan.
• Scheduler take in the query plan, organizes workers nodes, and schedules execution by breaking up

the plan into plan fragments.
• Execution Engine takes in plan fragments and executes them.
• I/O Service takes in block requests from the execution engine and returns the requested data after

retrieving it from the object store.
• Catalog keeps track of data locations and metadata for the DBMS and communicates with all com-

ponents of the DBMS except the front-end.

2.3 Distributed Query Execution
Executing an OLAP query on a distributed DBMS system is roughly the same as on a single-node DBMS.
A query plan can be thought of as a directed acyclic graph of physical operators, where for each operator
the DBMS is considering where the input data is coming from and where it is sending the output data to.
This data is split into two categories.

Persistent Data is the source of record for the database (e.g. tables). Modern systems assume these data
files are immutable but can update them by rewriting them.

Intermediate Data consists of short-lived artifacts produced by query operators during execution to be
consumed by other query operators. There is little to no correlation between the amount of intermediate data
and the amount of persistent data read or the execution time.

2.4 Distributed System Architecture
A distributed DBMSs architecture specifies the location of the database’s persistent data files. This affects
how different nodes coordinate with each other and where they retrieve / store objects in the database. There
are two approaches to connecting the query with the data.

Push query to data is when the query (or a portion the query) is sent to the node that contains the data.
As much filtering and processing as possible is done where the data resides before transmitting the result
over the network.

Pull data to query consists of bringing the data to a node that is executing a query that needs the data for
processing. This method is necessary when there are no compute resources at the location where persistent
data is stored.

2.5 System Architecture
There are two common system architectures, Shared-Nothing and Shared-Disk. Shared-Disk is the system
of focus and modern importance.

15-721 Advanced Database Systems
Page 2 of 4

https://15721.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #01 Modern Analytical Database Systems

Shared-Nothing requires that each DBMS instance has its own CPU, memory, and locally-attached disk.
These nodes then communicate via network, with the database partitioned into disjoint subsets split across
the nodes (this means adding a new node requires physically moving data between nodes). Since the data is
local, the DBMS can access it via POSIX API. This architecture is harder to scale due to data movement, but
is potentially more efficient and performant. It also allows for push query to data as each persistent memory
has compute resources.

Shared-Disk has each node connect to a single logical disk via interconnect, but may also have their own
private memory and ephemeral storage. Nodes must still communicate to learn about each others internal
state. Instead of a POSIX API, the DBMS accesses data through a userspace API. There is more flexibility
as the compute layer and storage layer can scale independently, it is easy to shutdown idle compute layer
resources. However, it may be required that data is pulled from storage to compute before applying filters
(though not necessarily).

2.6 Shared-Disk Implementation
Traditionally, the storage layer in Shared-Disk DBMSs were located on-prem NAS (e.g. Oracle Exadata).
Cloud object stores are now the prevailing storage target for modern OLAP DBMSs because of near-infinite
scalability (e.g. Amazon S3, Azure Blob, Google Cloud Storage).

3 Object Stores

To store a DBMSs contents in an object store, partition the tables into large immutable files to be stored
in the object store. All attributes for a tuple are stored in the same file in a columnar layout (PAX). The
header or footer should contain the metadata about columnar offsets, compression schemes, indices, and
zone maps. The DBMS retrieves the header / footer first to know what byte range it needs to retrieve the
data. Each cloud vendor implements their own proprietary API to access data (GET, PUT, DELETE).

15-721 Advanced Database Systems
Page 3 of 4

https://15721.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #01 Modern Analytical Database Systems

References

[1] P. Pedreira, O. Erling, K. Karanasos, S. Schneider, W. McKinney, S. R. Valluri, M. Zait, and J. Nadeau.
The composable data management system manifesto. Proc. VLDB Endow., 16(10):2679–2685, jun
2023. doi: 10.14778/3603581.3603604.

[2] M. A. Zaharia, A. Ghodsi, R. Xin, and M. Armbrust. Lakehouse: A new generation of open plat-
forms that unify data warehousing and advanced analytics. In Conference on Innovative Data Systems
Research, 2021.

15-721 Advanced Database Systems
Page 4 of 4

https://15721.courses.cs.cmu.edu/spring2024/

	Background
	1990s - Data Cubes
	2000s - Data Warehouses
	2010s - Shared Disk Engines
	2020s - Lakehouse Systems

	OLAP DBMS Architectures
	OLAP DBMS Components
	Architecture Overview
	Distributed Query Execution
	Distributed System Architecture
	System Architecture
	Shared-Disk Implementation

	Object Stores

