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1 Introduction

Vectorization is the process of converting an algorithm’s scalar implementation that processes a single pair
of operands at a time to a vector implementation that performs the same operation on multiple pairs of
operands at once. It is often also called Data Parallelization.

To take an extreme case, we can parallelize our algorithm over 32 cores, each with a 4-wide SIMD register.
Then, we are looking at a theoretical speedup of 128x. Although such a drastic speedup is not feasible
in real-world scenarios, vectorization is still essential for most OLAP systems. The reasons will be talked
about more in the following sections as follows:

2. Background
3. Implementation Approaches
4. Vectorization Fundamentals
5. Vectorized DBMS Algorithms

2 Background

This section will cover the basics of how SIMD works, the operations supported by current architectures,
and the techniques to utilize them in DBMS.

2.1 SIMD
SIMD (Single Instruction, Multiple Data) is A class of CPU instructions that allow the processor to per-
form the same operation on multiple data points simultaneously. All major ISAs have micro-architecture
support for SIMD operations. The fundamental idea of SIMD vector processing is to keep the data in the
SIMD registers for as long as possible, perform efficient operations on them, and only flush them out when
necessary.

The following are several common SIMD Instructions. For more details on the differences between different
architectures refer presentation by James Reinders:

• Data Movement: Moving data in and out of SIMD registers, to memory, other registers, and possibly
even bypassing the cache.

• Basic Operations: Arithmetic, Logical and Comparison operations

We will talk more about AVX-512 and the new instructions it introduced in the following sections.
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2.2 Vectorization Direction
Using these SIMD registers and operations, the DBMS can perform vectorized operations in two broad
ways:

• Horizontal: Operate on all elements together in a single vector. Useful for aggregation style queries
like Sum. It is not commonly used and is only supported in AVX2 and up.

• Vertical: Perform operation in an element-wise manner on elements of each vector. It is helpful for a
variety of queries like comparison or arithmetic operations and is widely used.

3 Implementation Approaches

The following are the broad categories of approaches to convert scalar operations to their vectorized ver-
sions:

• Automatic Vectorization: The compiler can identify when instructions inside of a loop can be rewrit-
ten as a vectorized operation. It works for simple operations only and is rare for database operators.
However, the compiler is very conservative and will avoid converting to vector operations if there is
any chance of it causing a correctness issue, E.g., Possibly overlapping pointers.

• Compiler Hints: Provide the compiler with additional information about the code to inform it that it
is safe to vectorize. The developer is responsible for providing correct hints/guidelines. The following
are two approaches to this:

– Give explicit information about memory locations. E.g., Using restrict keyword in C/C++. Very
common in DBMS.

– Force the compiler to ignore vector dependencies.
• Explicit Vectorization: Use CPU intrinsics to marshal data between SIMD registers and execute vec-

torized instructions manually. It is often not portable across ISA/versions unless you use an indirection
library like Google Highway.

The results from [1] using ICC (intel’s compiler) indicate that although manual often performs best, it does
not always lead to the smallest lines of code. The hybrid approach of letting the compiler auto-vectorize
with hints and then optimize whatever is left manually often gives a good middle ground in terms of the
amount of effort, performance, and lines of code.

4 Vectorization Fundamentals

This section explains the new operations in AVX-512 in greater detail and how they can speed up computa-
tion [2].

• Masking: Almost all AVX-512 operations support predication variants whereby the CPU only per-
forms operations on lanes specified by an input bitmask. This avoids wasteful computation.

• Permute: For each lane, copy values in the input vector specified by the offset in the index vector
into the destination vector. Before AVX-512, the DBMS had to write data from the SIMD register to
memory and then back to the SIMD register, thus polluting the CPU cache.

• Selective Load: Use a bitmask to load data from memory onto only the selected elements in the
SIMD vector.

• Selective Store: Use a bitmask to store data in the memory from only the selected elements in the
SIMD vector.
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• Compress: Use a bitmask to store only the selected elements from an input vector onto a vector
contiguously.

• Expand: Use a bitmask to store the contiguous elements of an input onto the selected locations of
another vector.

• Selective Gather: Use an index vector to load the selected elements from memory onto a vector
contiguously.

• Selective Scatter: Use an index vector to store the contiguous elements from a vector onto the selected
elements on memory.

Although AVX-512 is extremely useful because of the new operations, the extension has been split into
different groups, and CPUs can selectively provide some or all of the groups. Older extensions like AVX2
were all or nothing and thus consistent. This forces DBMS to check the exact AVX-512 group supported by
the hardware and choose the optimal algorithm accordingly.

Additionally, some CPUs downclock [2] the processor to avoid heating issues when running some AVX-
512 instructions, which may lead to overall higher processing time. Hence, some DBMS choose to stick to
AVX2.

5 Vectorized DBMS Algorithms

This section will discuss the principles for efficient vectorization by using fundamental vector operations to
construct more advanced functionality [4]. The two basic ideas are as follows:

• We typically favor vertical vectorization by processing different input data per lane. Horizontal will
also be used but has fewer applications.

• Maximize lane utilization by executing unique data items per lane subset. Avoid useless computations
on data known to be invalid.

In particular, we will talk about vectorizing the following algorithms:

5.1 Selection Scans
Load data onto a SIMD vector and perform the predicate evaluation on the vector in parallel. Use the
resulting bitmask to perform further operations on only the relevant data. Once the final bitmask is ready,
use it to store the result. Minor optimizations can also be implemented to check if the entire vector becomes
invalid after the operations. Auto vectorization of complex selection predicates is not trivial and often needs
human intervention to be optimal.

The results from [1] show that using SIMD instructions and hand-written optimal code over Scalar instruc-
tions can lead to a speedup of 10% - 130% based on the type of operator for individual element processing.
However, when queries are compared end to end, there is barely a 10% improvement due to the limited
portion of the query that can be vectorized and materialization overheads.

5.2 Relaxed Operator Fusion [3]
For each batch of tuples, the SIMD vectors may contain tuples that are no longer valid (they were disqualified
by some previous check), which leads to underutilization.

The idea behind Relaxed Operator Fusion (ROF) is to decompose the pipelines into stages that operate on
vectors of tuples with artificial pipeline breakers. Each stage may contain multiple operators, which com-
municate through cache-resident buffers. Only move on to the next stage when the buffer is full; otherwise,
keep processing the current stage.
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Another benefit of ROF is that it works well with software prefetching, thus hiding cache miss latency.
The DBMS can tell the CPU to grab the next vector while it works on the current batch. Prefetch-enabled
operators define the start of a new stage. Any prefetching technique, like group prefetching, works well with
ROF and is simple to implement.

5.3 Vector Refill Algorithms
The following are two approaches to refilling vectors using AVX-512 (possible due to the higher number of
registers):

• Buffered: Use additional SIMD registers to stage results within an operator and proceed with the next
loop iteration to fill in underutilized lane vectors.

• Partial: Use additional SIMD registers to buffer results from underutilized vectors and then return
to the previous operator to process the next vector. Requires fine-grained bookkeeping to make sure
other operators do not clobber deferred vectors.

Not many systems do this because of the sheer complexity of implementing this and the overhead of the
bookkeeping required.

5.4 Hash Tables
Linear probe hash tables are not typically suited to vector operations because they require arbitrary memory
accesses. Two methods for vectorizing this is as follows:

• Horizontal: Store multiple keys and values at each offset in the hash table. Use SIMD to compare
the single input key to the multiple keys in the hash table location to find a match. It is not guaranteed
to fully utilize the vector since key slots in the hash table may be empty.

• Vertical: Store a single key per vector slot. Use a SIMD gather to get key slots from memory to
match. Replace the input keys that did match and offset the others by 1. This almost always results in
complete utilization.

The results indicate that vertical is better for most use cases, but both drop down to as slow as scalar when
the hash table grows too large to fit in the cache.

5.5 Partitioning - Histogram
When building histograms for statistics, use scatter and gather to increment counts. However, since multiple
keys may map to the same hash index and clobber each other, we replicate the histogram so that each SIMD
vector slot updates only one column (essentially becomes a matrix where each column corresponds to one
SIMD vector slot). Then, a SIMD add is done to get the final histogram values.
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