
Lecture #07: Code Generation & Compilation
15-721 Advanced Database Systems (Spring 2024)
https://15721.courses.cs.cmu.edu/spring2024/

Carnegie Mellon University
Prof. Andy Pavlo

1 Background

In the previous lecture, we focus on how to use SIMD to vectorize core database algorithms for sequential
scans. The research literature in the 2010s can give the impression that vectorization and JIT compilation
are mutually exclusive.

After minimizing the disk I/O during query execution, the only way to increase throughput is to reduce the
number of instructions executed [4]:

• To go 10× faster, the DBMS must execute 90% fewer instructions.
• To go 100× faster, the DBMS must execute 99% fewer instructions.

2 Observation

One way to achieve a significant reduction in instructions is through code specialization. This means
generating code (e.g., machine code and source code) that is specific to a particular task (e.g., one query)
in the DBMS (e.g., a specific query) on the fly. Most code prioritizes human readability over performance,
which is particularly in query interpretation and expression evaluation.

Query Interpretation:

• In a volcano model, each input tuple from the child is iterated and emitted to upper-level operators.
This involves having a pointer to a root node in the query plan, and there will be virtual function table
lookups during runtime in languages like C++.

• However, relying on function pointer lookups at runtime can be inefficient on modern CPUs.

Expression Evaluation:

• DBMS evaluates predicates using an expression tree.
• Expression trees are expensive to interpret when a query accesses a lot of tuples.

3 Code Specialization

The DBMS generates code for any CPU-intensive task that has a similar execution pattern on different
inputs. The operations include:

• Access methods
• Stored procedure
• Operator execution
• Predicate evaluation (Most Common)

https://15721.courses.cs.cmu.edu/spring2024/
https://15721.courses.cs.cmu.edu/spring2024/
https://www.cs.cmu.edu/~pavlo/


Spring 2024 – Lecture #07 Code Generation & Compilation

• Logging operations

For query-focused compilation, the DBMS (typically) specializes in it after generating the physical plan for
a query.

Because relational DBMSs have schemas, code specialization has three benefits:

• Since attribute types are known a priori, the DBMS can convert data access function calls to inline
pointer casting.

• Since predicates are known a priori, the DBMS can evaluate them using primitive data comparisons.
• The DBMS can have no function calls in loops. This allows the compiler to efficiently distribute data

to registers and increase cache reuse.

4 Code Generation

When executing a query, the DBMS first sends it to the parser to produce the abstract syntax tree (AST).
The AST is then passed to the binder, which communicates with the system catalog to retrieve the annotated
AST. The Annotated AST is then translated to a physical plan by the optimizer. In the end, the physical plan
is sent to the compiler, which uses Code Generation approaches to generate native code.

There are two approaches to code generation:

Approach #1 – Transpilation (Source-to-Source Compilation)
Transpilation involves writing code that converts a relational query plan into imperative language source
code and then runs it through a conventional compiler to generate native code. Relational operators are a
useful way to reason about a query but are not the most efficient way to execute it.

• Holistic Code Generation: For a given query plan, transpilation generates a C/C++ program that
implements the query’s execution, baking in all the predicates and type conversions. It then uses an
off-shelf compiler (e.g., gcc) to convert the code into a shared object, link it to the DBMS process,
and invoke the exec function to execute the query.

• DBMS Integration: The generated query code can invoke any other function in the DMBS. This
allows the generated code to use all the same components as interpreted queries (e.g., network han-
dlers, buffer pool manager, concurrency control, logging/checkpoints, and indexes). Debugging is
(relatively) easy because you step through the generated source code.

• Observation: Relational operators are a useful way to reason about a query but are not the most
efficient way to execute it. The evaluation of the HIQUE [9] system shows that the DBMS incurs
fewer memory stalls when executing the query, but it takes a (relatively) long time to compile a
C/C++ source file into executable code. (i.e., greater than 100–600 ms). HIQUE also does not allow
for full pipelining.

Approach #2 - JIT Compilation
JIT Compilation generates an intermediate representation (IR) of the query that can be quickly compiled
into native code [11].

• HyPer: The HyPer DBMS compiles queries into native code using the LLVM toolkit [10]. Instead
of emitting C++ code, HyPer emits LLVM IR. LLVM is a collection of modular and reusable compiler
and toolchain technologies. Its core component is a low-level programming language (IR) that is sim-
ilar to assembly. Like transpilation, LLVM doesn’t need to implement all of the DBMS components
in IR. The LLVM code can make calls to C++ code.

15-721 Advanced Database Systems
Page 2 of 7

https://15721.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #07 Code Generation & Compilation

• JIT Query Compilation: JIT compilation fuses operators aggressively within pipelines to keep a
tuple in CPU registers for as long as possible. The query plan is divided into pipelines (i.e., how far
up the query tree the DBMS can continue processing a tuple before needing the next tuple). This
approach is push-based and data-centric.

• Observation: LLVM compilation cost is low with OLTP queries but may have major problems with
OLAP workloads. HyPer’s query compilation time grows super-linearly relative to the query size (#
of joins, predicates, and aggregations).

One solution to mask the compilation time is HyPer’s Adaptive Execution model [7]:

1. The model generates LLVM IR for the query and immediately starts executing the IR using an inter-
preter.

2. The DBMS then compiles the query in the background.
3. When the compiled query is ready, seamlessly replace the interpretive execution. For each morsel,

check to see whether the compiled version is available.

5 Real World Implementations

Real-world implementations of database management systems (DBMS) vary widely in their approaches
and techniques. They can be classified into different categories based on their implementation strategies,
including transpilation, custom solutions, JVM-based implementations, and LLVM-based implementations.

Classifications:

• Transpilation: Amazon Redshift, Oracle, MemSQL (2016)
• Custom: IBM System R, Actian Vector, Microsoft Hekaton, SQLite, TUM HyPer, TUM Umbra,

QuestDB
• JVM-based: Spark, Neo4j, Splice Machine, Presto / Trino, OrientDB, Tajo, Derby
• LLVM-based: SingleStore, VitesseDB, PostgreSQL (2018), CMU Peloton, CMU NoisePage, TUM

LingoDB

Below, we explore notable examples of these implementations, each offering unique features and optimiza-
tions tailored to specific use cases and performance requirements.

Implementations:

• IBM System R [3]
– IBM System R used a primitive form of code generation and query compilation in the 1970s.
– It compiled SQL statements into assembly code by selecting code templates for each operator.
– The technique was abandoned when IBM built SQL/DS and DB2 in the 1980s due to the high

cost of external function calls, poor portability, and software engineer complications.
• Vectorwise [12]

– Vectorwise pre-compiles thousands of ”primitives” that perform basic operations on typed data.
Using simple kernels for each primitive means that they are easier to vectorize.

– The DBMS then executes a query plan that invokes these primitives at runtime. Function calls
are amortized over multiple tuples. The output of a primitive is the offsets of tuples.

• Amazon Redshift [2]
– Amazon Redshift converts query fragments into templated C++ code. It’s a push-based execu-

tion with vectorization.
– DBMS checks whether there already exists a compiled version of each templated fragment in

the customer’s local cache.

15-721 Advanced Database Systems
Page 3 of 7

https://15721.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #07 Code Generation & Compilation

– If the fragment does not exist in the local cache, then it checks a global cache for the entire fleet
of Redshift customers.

• Oracle
– Oracle converts PL/SQL stored procedures into Pro*C code and then compiles it into native

C/C++ code.
– They also put Oracle-specific operations (e.g., compression, vectorization, and security) directly

in the SPARC chips as co-processors.
• Microsoft Hekaton [4]

– Microsoft Hekaton can compile both procedures and SQL. Non-Hekaton queries can access
Hekaton tables through compiled inter-operators.

– It generates C code from an imperative syntax tree, compiles it into DDL, and links at runtime.
– It employs safety measures to prevent somebody from injecting malicious code in a query.

• SQLite
– SQLite converts a query plan into opcodes and then executes them in a custom VM (bytecode

engine). Opcode specifications can change across versions. This is also known as ”Virtual
DataBase Engine” (VDBE)

– SQLite’s VM ensures that queries execute the same in any possible environment.
• TUM Umbra [6]

– Umbra’s ”FlyingStart” adaptive execution framework generates custom IR that maps to x86
assembly in a single pass. The developers manually perform dead code elimination. The DBMS
is basically a compiler. They also wrote their own debugger!

• Java Databases
– There are several JVM-based DBMSs that contain custom code that emits JVM bytecode di-

rectly, including Spark, Neo4j, Splice Machine, Presto / Trino, Derby, Tajo. This is functionally
the same as generating LLVM IR.

• Apache Spark [1]
– Apache Spark was introduced in the new Tungsten engine in 2015. The system converts a

query’s WHERE clause expression trees into Scala ASTs and then compiles these ASTs to
generate JVM bytecode, which is then executed natively.

– Databricks abandoned this approach with their new Photon engine in the late 2010s.
• QuestDB

– QuestDB is a Java-based time-series columnar DBMS. The Java front-end converts WHERE
clause predicates into IR and then uses a C++ backend to compile the IR into vectorized machine
code using asmjit.

• SingleStore
– Before 2016, SingleStore performed the same C/C++ code generation as HIQUE [9] and then

invoked gcc. It also converts all queries into a parameterized form and caches the compiled
query plan.

– Since 2016, a query plan is converted into an imperative plan expressed in a high-level imperative
DSL, MemSQL Programming Language (MLP), which gets converted into custom opcodes
called MemSQL Bit Code (MBC). Lastly, the DBMS compiles the opcodes into LLVM IR and
then to native code.

• PostgreSQL [8]
– PostgreSQL added support in 2018 (v11) for JIT compilation of predicates and tuple deserial-

ization with LLVM. It relies on optimizer estimates to determine when to compile expressions.
– It automatically compiles Postgres’ backend C code into LLVM C++ code to remove iterator

calls.
• VitesseDB

15-721 Advanced Database Systems
Page 4 of 7

https://15721.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #07 Code Generation & Compilation

– VitesseDB is a query accelerator for Postgres/Greenplum that uses LLVM + intra-query paral-
lelism with a push-based model. It also supports JIT predicates and makes indirect calls direct
or inlined.

– It does not support all of Postgres’ types and functionalities. All DML operations are still inter-
preted.

• CMU NOISEPAGE (2019)
– CMU NOISEPAGE uses SingleStore-style conversion of query plans into a database-oriented

DSL, which is then compiled into opcodes.
– It uses HyPer-style interpretation of opcodes while compilation occurs in the background with

LLVM.

6 Vectorization vs. Compilation

Test-bed system [5] to analyze the trade-offs between vectorized execution and query compilation. High-
level algorithms are implemented in both systems, but the implementation details vary based on the archi-
tecture of each system.

• Approach #1: Tectorwise It breaks operations into pre-compiled primitives. The output of primitives
must be materialized at each step.

• Approach #2: Typer A push-based processing model with JIT compilation, where it processes a
single tuple up the entire pipeline without materializing the intermediate results.

Both models are efficient and achieve roughly the same performance. (100x faster than row-oriented
DBMSs!) Data-centric is better for ”calculation-heavy” queries with few cache misses. Vectorization is
slightly better at hiding cache miss latencies.

7 Conclusions

Query compilation makes a difference but is nontrivial to implement. The 2016 version of SingleStore
is the best query compilation implementation out there in terms of performance and engineering. Umbra
FlyingStart is ridiculously good, but that’s because the Germans are ridiculously good. Newer systems
choose to implement Vectorwise-style vectorization instead of compilation.

15-721 Advanced Database Systems
Page 5 of 7

https://15721.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #07 Code Generation & Compilation

References

[1] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, and M. Zaharia. Spark sql: Relational data processing in spark. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, SIGMOD ’15, page 1383–1394,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450327589. doi:
10.1145/2723372.2742797. URL https://doi.org/10.1145/2723372.2742797.

[2] N. Armenatzoglou, S. Basu, N. Bhanoori, M. Cai, N. Chainani, K. Chinta, V. Govindaraju, T. J. Green,
M. Gupta, S. Hillig, E. Hotinger, Y. Leshinksy, J. Liang, M. McCreedy, F. Nagel, I. Pandis, P. Parchas,
R. Pathak, O. Polychroniou, F. Rahman, G. Saxena, G. Soundararajan, S. Subramanian, and D. Terry.
Amazon redshift re-invented. In Proceedings of the 2022 International Conference on Management
of Data, SIGMOD ’22, page 2205–2217, New York, NY, USA, 2022. Association for Computing
Machinery. ISBN 9781450392495. doi: 10.1145/3514221.3526045. URL https://doi.org/10.
1145/3514221.3526045.

[3] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. N. Gray, W. F. King, B. G. Lindsay, R. Lorie,
J. W. Mehl, T. G. Price, F. Putzolu, P. G. Selinger, M. Schkolnick, D. R. Slutz, I. L. Traiger, B. W.
Wade, and R. A. Yost. A history and evaluation of system r. Commun. ACM, 24(10):632–646, Oct.
1981. URL http://doi.acm.org/10.1145/358769.358784.

[4] C. Freedman, E. Ismert, and P.-Å. Larson. Compilation in the microsoft sql server hekaton engine.
IEEE Data Eng. Bull., 37:22–30, 2014. URL http://15721.courses.cs.cmu.edu/spring2017/
papers/20-compilation/freedman-ieee2014.pdf.

[5] T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and P. Boncz. Everything you always wanted
to know about compiled and vectorized queries but were afraid to ask. Proc. VLDB Endow., 11(13):
2209–2222, sep 2018. ISSN 2150-8097. doi: 10.14778/3275366.3284966. URL https://doi.org/
10.14778/3275366.3284966.

[6] T. Kersten, V. Leis, and T. Neumann. Tidy tuples and flying start: fast compilation and fast execution
of relational queries in umbra. The VLDB Journal, 30(5):883–905, jun 2021. ISSN 1066-8888. doi:
10.1007/s00778-020-00643-4. URL https://doi.org/10.1007/s00778-020-00643-4.

[7] A. Kohn, V. Leis, and T. Neumann. Generating code for holistic query evaluation. In ICDE), 2018.
URL https://db.in.tum.de/∼leis/papers/adaptiveexecution.pdf.

[8] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Erickson, M. Grund,
D. Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li, I. Pandis, H. Robinson,
D. Rorke, S. Rus, J. Russell, D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder. Impala: A modern,
open-source sql engine for hadoop. In CIDR, 2015. URL http://cidrdb.org/cidr2015/Papers/
CIDR15 Paper28.pdf.

[9] K. Krikellas, S. D. Viglas, and M. Cintra. Generating code for holistic query evaluation. In 2010 IEEE
26th International Conference on Data Engineering (ICDE 2010), pages 613–624, March 2010. URL
http://10.1109/ICDE.2010.5447892.

[10] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program analysis & trans-
formation. In Proceedings of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, CGO ’04, pages 75–, 2004. URL http://dl.acm.
org/citation.cfm?id=977395.977673.

15-721 Advanced Database Systems
Page 6 of 7

https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/3514221.3526045
https://doi.org/10.1145/3514221.3526045
http://doi.acm.org/10.1145/358769.358784
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/freedman-ieee2014.pdf
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/freedman-ieee2014.pdf
https://doi.org/10.14778/3275366.3284966
https://doi.org/10.14778/3275366.3284966
https://doi.org/10.1007/s00778-020-00643-4
https://db.in.tum.de/~leis/papers/adaptiveexecution.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
http://10.1109/ICDE.2010.5447892
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://15721.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #07 Code Generation & Compilation

[11] T. Neumann. Efficiently compiling efficient query plans for modern hardware. Proc. VLDB Endow., 4
(9):539–550, June 2011. URL http://dx.doi.org/10.14778/2002938.2002940.

[12] B. Răducanu, P. Boncz, and M. Zukowski. Micro adaptivity in vectorwise. In Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data, SIGMOD ’13, page 1231–1242,
New York, NY, USA, 2013. Association for Computing Machinery. ISBN 9781450320375. doi:
10.1145/2463676.2465292. URL https://doi.org/10.1145/2463676.2465292.

15-721 Advanced Database Systems
Page 7 of 7

http://dx.doi.org/10.14778/2002938.2002940
https://doi.org/10.1145/2463676.2465292
https://15721.courses.cs.cmu.edu/spring2024/

	Background
	Observation
	Code Specialization
	Code Generation
	Real World Implementations
	Vectorization vs. Compilation
	Conclusions

