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1 Introduction

Query optimization is responsible for converting SQL statements to a scheme that can be executed by the
database system. It plays a vital role in the entire system, as no matter how good the storage and execution
engines are, the performance can still be poor if the optimizer does not generate an efficient execution
scheme.

1.1 Logical vs. Physical Plans
Logical plans contain logical operators, which roughly correspond to relational algebra operators. They
describe what the operator’s result looks like without describing how the system obtains that result.

Physical plans contain physical operators that specify how a logical operation is implemented. The phys-
ical operators typically depend on the physical format of the data they process.

Logical operators do not have a 1-to-1 mapping to physical operators. For instance, a logical join and a
logical sort can be combined into a physical sort-merge join.

1.2 Cost Estimation
Cost estimation generates an estimate of the cost of executing a plan based on the current state of the
database. Typically, the cost does not directly reflect query runtime - it is only for comparison purposes and
is meaningless on its own.

1.3 Query Optimization
For a given query, the query optimization process finds a correct physical execution plan for that query
ideally with the lowest cost. Here, we say ideally because:

• Enumerating all possible plans is impractical, so we must trim down the search space.
• The cost model typically underestimates costs by a large margin, so the ”cost-optimal” plan is not

necessarily the ”true” optimal plan.

The optimization process usually involves logical-to-logical, logical-to-physical, and physical-to-physical
operator transformations. It never transforms physical operators back to logical operators.

1.4 Enumeration Architectures
There are three key components in a query optimizer: search space, cost estimation (aka. cost model), and
enumeration architecture. This lecture covers the following four enumeration architectures.

• Heuristics
• Heuristics + Cost-based Search
• Stratified Search
• Unified Search
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2 Heuristics

A heuristics-based optimizer defines static rules (essentially if-and-else clauses) that transform logical
operators into a physical operators without doing a cost-based search. Below are some examples of logical
transformation rules.

• Split Conjunctive Predicates: Decompose predicates into their simplest forms to make them easier
to move around.

• Predicate Pushdown: Move the predicate to the lowest point in the plan after Cartesian products.
• Replace Cartesian Products with Joins: Replace all Cartesian products with inner joins using the

join predicates.
• Projection Pushdown: Eliminate redundant attributes before pipeline breakers to reduce materializa-

tion cost.

Heuristics-based optimizers are easy to implement and efficient. However, they only work well on simple
queries and rely on magic constants to evaluate planning decisions.

Examples:

• Ingres (until mid-1980s)
• Oracle (until mid-1990s)
• MongoDB
• Most DBMSs in their earliest development stages

2.1 Ingres Optimizer
Initially, Ingres was unable to perform joins. Instead, joins were handled in the following way.

1. Decompose a join query into simpler queries where the FROM clause contains at most two tables
joining. Except for the first query (see Query #1 in Figure 1), the other queries contain a join between
one of the tables in the original query and the materialized result of the previous query.

Figure 1: Join decomposition

2. Loop through the values from the previous query, substituting them into one side of the join predicate
and removing the join (see Figure 2). The queries generated in this process involve only a single table
and are called single-value queries.
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Figure 2: Single-value substitution

3 Heuristics + Cost-Based Search

In a heuristics + cost-based search optimizer, optimization is split into two stages. In the first stage, we
apply heuristics, as we do above. In the second stage, we enumerate some number of possible query plans
and select the best one according to its estimated cost.

Examples:

• System R
• DB2 (in its early days)
• Postgres
• Most open-source DBMSs

3.1 System R
The System R optimizer [4] was the optimizer that pioneered this architecture. In the first stage, the system
heuristically applied logical-to-logical transformations. In the second stage, the system ”searched” through
different plans by performing a series of logical-to-physical transformations and estimating the cost of each
searched subplan.

System R’s search process was bottom-up as the system would first find the best physical plan for subplans
involving a single relation, and then the best physical plan for subplans involving two relations, and so on
(see Figure 3). To prune the search space, the system only considered left-deep trees, or trees where the
right subplan of all join nodes does not have any join nodes of its own. Additionally, System R would mark
subplans with physical properties such as whether the results are sorted or not. Plans using those subplans
could take advantage of such physical properties.

4 Aside: Optimizer Generators

The two optimizers discussed so far, Ingres and System R, were both standalone, monolithic programs.
However, as the field of query optimization matured, the idea of an optimizer generator, or optimizer
framework, emerged. With an optimizer generator, the search algorithm of the optimizer is decoupled from
the specific transformation rules used in the search process. Furthermore, such transformation rules are
generally written in a custom declarative programming language, which makes them easier to program.
Additionally, an optimizer written using a framework is more extensible because it is easier to plug in new
transformation rules to the optimizer as the DBMS receives new features.
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Figure 3: The bottom-up search process

5 Stratified Search

When developing an optimizer generator, one option for the search strategy is stratified search. With this,
optimization is split into multiple distinct stages that each use a subset of the transformation rules. For
instance, it is common to perform logical-to-logical transformations in the first stage and logical-to-physical
transformations in the second stage, similar to heuristics + cost-based search.

Examples:

• Starburst
• CockroachDB

5.1 Starburst
The Starburst optimizer [3] is essentially an implementation of the System R optimizer as an optimizer
generator. It has a heuristic phase and a cost-based search phase, just like the System R optimizer. The
cost-based search is also performed in the same bottom-up manner.

6 Unified Search

Another search strategy for an optimizer generator is a unified search. With this, the entire optimization
process happens in a single (search) phase where both logical-to-logical and logical-to-physical transforma-
tions are applied. This approach removes the need to apply transformations using only heuristics, instead
folding them into the search process.

Examples:

• Volcano
• Cascades
• optd
• OPT++
• SQL Server
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6.1 Volcano
The Volcano optimizer [2] uses unified search with a top-down approach (see Figure 4) based on branch-
and-bound search. Starting from the root node, the system would invoke transformation rules to expand
the plan and traverse the search space. To improve efficiency, the system would memoize the best costs of
subplans found so far and bound a particular branch if its cost exceeded the memoized cost of equivalent
subplans.

Figure 4: The top-down search process

Volcano also had the notion of physical properties, like System R. However, since its search was top-down
instead of bottom-up, these physical properties were managed using enforcer rules instead. Enforcer rules
constrained child nodes to only use transformations that resulted in the physical properties required by their
parents.

6.2 Cascades
The Cascades optimizer [1] also performs top-down search, but in a way that is more sophisticated than the
Volcano optimizer. Instead of trying all transformation rules immediately upon arriving at a node, it can
prioritize some rules and defer other rules to later. It achieves this by abstracting the children of a node away
with placeholders so that they do not need to be materialized immediately. More discussion on the Cascades
optimizer can be found in Lecture #14: Optimizer Implementation II.
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7 Search Termination Strategies

As enumerating all possible plans may take too long, we need a way to determine whether we have reached
a good enough plan and stop the search. Below are some common strategies for terminating the search.

• Wall-clock Time: Stop after the optimizer runs for some length of time.
• Cost Threshold: Stop when the optimizer finds a plan that has a lower cost than some threshold.
• Exhaustion: Stop when there are no more enumerations of the target plan. Usually done per sub-plan.
• Transformation Count: Stop after a certain number of transformations have been considered.
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