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1 Introduction

Traditional query optimizers generate a query plan before the DBMS executes the query. The optimal plan,
however, changes as the database’s state evolves over time. This can be due to:

1. Changes in the physical design of the database
• Adding or dropping indexes
• Partition scheme changes

2. Changes in data
• Adding or removing tuples
• Change in the distribution of values for columns

3. Prepared statement parameters can change per invocation
4. If ANALYZE was run more recently, the optimizer’s decision may be completely different

All this is to say that query plans that were once good may not always be good. Bad query plans may result
from the changes listed above. If we are able to detect bad query plans (typically from poor join ordering),
we may be able to adapt them instead of optimizing again from scratch.

1.1 Optimization Timing
There are three timings for query optimization.

1. Static Optimization
• Select the best plan prior to execution
• Plan quality dependent on cost model accuracy

2. Dynamic Optimization
• Select plans on-the-fly, as queries execute
• Each execution has a different optimization
• Hard to implement and debug (non-deterministic)

3. Adaptive Optimization
• Compile a query plan statically
• If the estimation errors exceed some threshold, change the plan or re-optimize entirely.

In this lecture, we will be focusing on adaptive optimization.

2 Adaptive Query Optimization

The main idea of adaptive query optimization is detecting a bad query plan at execution time, and improving
it. The query optimizer’s estimates can be evaluated during execution, as the information becomes available
[1].
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2.1 Approaches
1. Modify Future Invocations

• As we get information during execution, report it back to the optimizer.
• Help the optimizer generate a better plan next time.
• Current plan remains suboptimal.

2. Replan Current Invocations
• If we have a bad plan, go back to the optimizer and start over.
• Discard execution progress entirely.

3. Plan Pivot Points
• Switch from one strategy to another mid-execution—do not go back to the optimizer.
• Improve the current plan while we are executing it.

3 Modify Future Invocations

In this approach, we are focusing on improving future query plans. For example, if, while executing a
scan, we found that the true selectivity is very different from the estimated selectivity, we can modify future
invocations with the true selectivity.

1. Plan Correction
• Fix the given query plan, for next time.

2. Feedback Loop
• Merge the information into the statistical catalog.
• Help future query cost estimations.

3.1 Reversion-based Plan Correction
In this strategy, the DBMS tracks the history of query invocations. This includes the cost estimations from
the optimizer, the generated query plan, and the actual metrics gathered at runtime.

Then, when the DBMS generates a new plan for a query we have seen before, we can compare it to a
previous plan. If it regresses (performs worse), we can switch back to an earlier plan.

For example, if we run the same query again after creating new indexes, it may be able to take advantage of
index scans. However, the cardinality estimates may have resulted in a poor choice of physical join operator.
If the new plan is worse, despite the indexes, we can throw it away and use the old query plan for future
invocations.

4 Plan Stitching

Plan stitching builds on the reversion-based plan correction approach described in the previous section by
allowing us to “stitch” logically equivalent sub-plans from different query plans together, to form an even
better plan. [3]

Approach:

1. Identify which sub-plans are logically equivalent
2. Generate a graph containing all possible sub-plans, where OR operators indicate alternate paths
3. Perform bottom-up search in that graph, picking the best/cheapest node at each operator
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4.1 Identifying Equivalent sub-plans
Determining if any arbitrary sub-plans are logically equivalent is undecidable. Instead, we can define equiv-
alence as having the same logical expression and physical properties. We can also prune sub-plans that will
never be equivalent using simple heuristics (e.g. accessing different sets of tables).

4.2 Encoding Search Space
The search space is encoded as a graph containing OR operators, where each OR operator represents an
alternate ”path” through the plan, i.e. a different sub-plan.

Later, a bottom-up search is performed through this data structure. To find the best plan in this search, at
each OR operator, the cheapest sub-plan is selected.

Figure 1: Bottom-up search through graph with red OR nodes

4.3 Redshift: Codegen Stitching
Redshift, a transpilation-based codegen engine, saves on compilation time by doing the stitching at the
codegen level. When a sub-plan is stitched, instead of recompiling a sub-plan that we have seen before, the
generated code is also available in the cache.

In addition, this cache is global to every customer in Redshift, allowing for a high cache hit rate and a large
body of available sub-plans.

4.4 IBM DB2: Learning Optimizer
As the DBMS scans a table during normal execution, update the table statistics with new information. This
is one of the earliest examples of a commercial system adopting adaptive query optimization techniques [5].
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5 Replan Current Invocation

In the plan stitching approach described in the previous section, our goal is to improve the quality of future
invocations of the same query. With this method, we intend to improve the quality of the current plan.

There are two approaches to replanning the current invocation:

1. Start over from scratch
• Continuing with our current query plan will be worse than starting over.

2. Keep some intermediate results
• If we have already done some expensive work, we can keep some of our results to save recom-

putation.

5.1 Quickstep: Lookahead Info Passing
At a high level, do some work at the beginning of the query, and pass information to later operators in the
query to make a more informed decision for join ordering. This approach is limited to left-deep join trees
and star schemas. [6]

Approach:

1. Compute bloom filters on dimension tables.
2. Probe these filters using fact table tuples to determine the ordering of the joins.

This gives us an approximation of the selectivity, which we can use to change the join ordering in the plan.

6 Plan Pivot Points

Introduce a special operator in the query plan that allows us to pivot the execution strategy during execution,
selecting a sub-plan based on information about how execution is going thus far [4].

For example: There is a CHOOSE node above a SCAN node. When we reach the CHOOSE node, we decide
to do a nested loop join if the data is very small, and do a hash join otherwise.

The advantages are that we do not have to go back to the optimizer in adapting our plan, and we do not have
to lose any execution progress.

6.1 Proactive Reoptimization
When the optimizer generates our plan, generate “bounding boxes”, putting a bound on the uncertainty
we expect in our estimates. Just as before, the optimizer can select a different query plan at execution time.
However, if the real data exceeds the bounding box thresholds, we can yield to the optimizer and re-optimize
anyway [2].
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