Lecture #20: System Analysis (DuckDB)

15-721 Advanced Database Systems (Spring 2024)
https://15721.courses.cs.cmu.edu/spring2024/
Carnegie Mellon University
Prof. Andy Pavlo

1 Introduction to DuckDB

DuckDB [2] is an advanced, multi-threaded embedded database management system (DBMS) that is de-
signed to execute SQL over disparate data files. It is termed as “SQLite for Analytics™ due to its PostgreSQL-
like dialect and embedded nature. DuckDB provides zero-copy access to query results via Apache Arrow to
client code running in the same process. It is built with nearly all custom C++ code and has little to no third-
party dependencies, relying on an extension ecosystem to expand its capabilities. Additionally, DuckDB
supports DataFrame libraries to query databases without using SQL, such as dpylr for R-lang and Ibis for
Python. It also can access external data files via extensions, including Parquet, Arrow, SQLite, JSON, and
can install extensions to retrieve files from remote filesystems (HTTP, S3).

2 Design

The following section expands upon some of the design choices made by DuckDB.

2.1 High-Level Overview
DuckDB Design Decisions:

1. It uses a shared-everything architecture (Notion of compute and storage are not separated).
It implements push-based vectorized query processing.

It implements Multi-Version Concurrency Control inspired from Hyper.

It adopts precompiled primitives.

It uses Morsel-driven Parallelism.

It supports PAX Columnar Storage.

It supports both Sort-Merge Join and Hash Join operations.

It has a stratified Query Optimizer and supports unnesting of arbitrary subqueries.

NN kWD

2.2 Push-Based Processing

Push-based processing is a query processing model where each operator in the system determines whether
it will execute in parallel on its own, instead of relying on a centralized executor. This model was adopted
by DuckDB in 2021, after finding it challenging in the original pull-based vectorized query processing
to add additional operators. The push-based processing model allows for more flexibility and efficiency
in executing multiple pipelines simultaneously. This switch to push-based processing has improved the
system’s ability to handle complex parallelism and execute operations in a more distributed and efficient
manner.

This opens the door for additional optimizations and more fine-grained control of the system. It mentions the
use of a Vector Cache to buffer results between operators until it fills the vector. Additionally, Scan Sharing

https://15721.courses.cs.cmu.edu/spring2024/
https://15721.courses.cs.cmu.edu/spring2024/
https://www.cs.cmu.edu/~pavlo/

Spring 2024 — Lecture #20

involves pushing results from one child operator to multiple parent operators in the Directed Acyclic Graph
(DAG) plan. Storing state in a central location also enables Backpressure/Async IO, allowing pause operator
execution when buffers are full or when waiting for remote I/O. This fine-grained control allows for more

efficient and optimized query processing within the database system.
2.3 Vectors

DuckDB uses a unified format to process all vector types without needing to decompress them first. This
approach reduces the number of specialized primitives per vector type. Additionally, DuckDB has a custom
internal vector layout for intermediate results that is compatible with Velox and supports multiple vector

types. These features contribute to the efficient and flexible handling of vectors in DuckDB.

The multiple vector types supported:

24

DuckDB supports DataFrame libraries to query databases without using SQL, specifically dpylr for R-lang
and Ibis for Python. Integration libraries generate DuckDB logical plans that the DBMS converts into
optimized physical plans, bypassing the SQL parser. This allows for seamless integration and efficient

* Flat Vectors: physically stored as an uncompressed contiguous array.

* Constant Vectors: physically stored as a single constant value.

* Dictionary Vectors: physically stored as a dictionary vector indexed by a selection vector.
* Sequence Vectors: physically stored as a base vector and increment offset vector.

Flat Constant Dictionary Sequence
Uncompressed array All rows have the same value Map of indexes to dictionary Base and increment
1 0 a . 1
2 1 b 2
ase
3 0 Dict a 3
4 0 a m 4
5 1 b Increment 5
SelectionVector
oscaliogical Physical Logical Physical Logical Physical Logical
Figure 1: Vector Types Supported
Flat Constant Dictionary
Uncompressed array All rows have the same value Map of indexes to dictionary
1 I 1 2
2 i 1 :
1 Dict
4 1 a
b
5 1
et SelectionVector
Physical & Logical Physical Logical Physical Logical
1 [] 0 o g
2 @ ? [0 Unified
3 0 2 Vector
4 0
5 - 0 Format
Data Selection Data Semon Data Selection
Figure 2: Unified Vector Processing Format
DataFrames

querying using DataFrame libraries with DuckDB.

15-721 Advanced Database Systems
Page 2 of 5

System Analysis (DuckDB)

https://15721.courses.cs.cmu.edu/spring2024/

Spring 2024 — Lecture #20 System Analysis (DuckDB)

2.5 Storage Format

DuckDB uses a built-in storage format that maintains a single PAX-oriented file per database. This format
splits tables into row groups with 120k tuples, and the on-disk encoding is different than in-memory. Ad-
ditionally, the DBMS can access external data files via extensions, including Parquet, Arrow, SQLite, and

JSON. It also allows for the installation of extensions to retrieve files from remote filesystems such as HTTP
and S3.

3 MotherDuck: Extending DuckDB into the Cloud

MotherDuck introduces new capabilities to DuckDB, offering DuckDB data storage and serverless query
processing in the cloud [1]. It is provided as an extension to the existing DuckDb library while using the
same interface. Unlike highly scalable systems such as Snowflake or Dremel, MotherDuck focuses on the
efficient processing of DuckDB queries within serverless environments. It provides automatic execution of
DuckDB queries on serverless compute nodes, where remote nodes are DuckDB instances running inside
containers and connected to object stores.

3.1 Architecture

In the MotherDuck Architecture, the MotherDuck clients always run on a local DuckDB instance, on a
python shell or in web-apps where DuckDB runs as Web Assembly (wasm) embedded in an HTML page.
Remote computation occurs on a “duckling”, a variable-sized container within virtual machines in the cloud,
separated from the cloud storage layer that is connected to object storage [1].

Client Layer Compute Layer Storage Layer
A Python Shell £ Observability Duckling Storage Duckling Storage
: Container Ext Container Ext.
MotherDuck
DuckDB °Ex1ension % ® Monitoring
. > Duckling Storage ,__Duckling __# Storage
7 container Ext Container WqP Ext. I
- b : : ou! orage
@ Local Database H Ow Authentication : 3
: Host Service Storage Service & Caching
E.g: Laptop running Jupyter Notebook 3 :) r'
> 2R Load Balancer o< :
L] web Browser : e | Duckling &N Storage
1 L e : ' Container ‘W Ext.
Motherbuck | ;L " Duckling Storage &
DuckDB-Wasm L : H > i Ext R ™
Extension ! Container o — Differential
() Service Layer c 9 o orage DuckDB database
ontainer Ext.

MotherDuck GUI: Notebooks, SQL IDE & storage

Interactive Results Explorer
Host Service Storage Service & Caching

Source: MotherDuck

Figure 3: Overview of MotherDuck Architecture

3.2 Hybrid Query Processing

The MotherDuck optimizer exploits data locality during the query planning. If some data is local and some
remote, then part of the query will be executed locally, and part remotely, with introducing a new “bridge”
operators that passes tuple streams between local and remote DuckDB instances and leverages the operator
pausing feature that DuckDB added from switching to push-based execution. It will do query optimization
on the local instance as normal and then uses cost-based rules to decide what to run locally vs. remote.
To ensure local DuckDB has access to remote metadata during binding and query optimization phases,
MotherDuck maintains and exposes remote catalogs to the local instance.

15-721 Advanced Database Systems
Page 3 of 5

https://15721.courses.cs.cmu.edu/spring2024/

Spring 2024 — Lecture #20 System Analysis (DuckDB)

4 Conclusion

In conclusion, DuckDB is a perfect illustration of how a brilliant idea paired with top-notch engineering
effort can create a successful product. As they stated in the paper, while none of DuckDB’s components is
revolutionary in its regard, the use of a combination of methods and algorithms from the state of the art was
best suited for their use cases, making it a solid choice in its field.

15-721 Advanced Database Systems
Page 4 of 5

https://15721.courses.cs.cmu.edu/spring2024/

Spring 2024 — Lecture #20 System Analysis (DuckDB)

References

[1] R. Atwal, P. Boncz, R. Boyd, A. Courtney, T. Déhmen, F. Gerlinghoft, J. Huang, J. Hwang, R. Hyde,
E. Felder, J. Lacouture, Y. LeMaout, B. Leskes, Y. Liu, D. Perkins, T. Tereshko, J. Tigani, N. Ursa,
S. Wang, and Y. Welsch. MotherDuck: DuckDB in the cloud and in the client. 2024.

[2] M. Raasveldt and H. Miihleisen. DuckDB: an Embeddable Analytical Database. In Proceedings of the
2019 International Conference on Management of Data, pages 1981-1984, Amsterdam Netherlands,
June 2019. ACM. ISBN 978-1-4503-5643-5. doi: 10.1145/3299869.3320212. URL https://dl.acm.
org/doi/10.1145/3299869.3320212.

15-721 Advanced Database Systems
Page 5 of 5

https://dl.acm.org/doi/10.1145/3299869.3320212
https://dl.acm.org/doi/10.1145/3299869.3320212
https://15721.courses.cs.cmu.edu/spring2024/

	Introduction to DuckDB
	Design
	High-Level Overview
	Push-Based Processing
	Vectors
	DataFrames
	Storage Format

	MotherDuck: Extending DuckDB into the Cloud
	Architecture
	Hybrid Query Processing

	Conclusion

