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Abstract—Pipelines combining SQL-style business intelligence
(BI) queries and linear algebra (LA) are becoming increasingly
common in industry. As a result, there is a growing need to
unify these workloads in a single framework. Unfortunately,
existing solutions either sacrifice the inherent benefits of ex-
clusively using a relational database (e.g. logical and physical
independence) or incur orders of magnitude performance gaps
compared to specialized engines (or both). In this work, we
study applying a new type of query processing architecture
to standard BI and LA benchmarks. To do this, we present
a new in-memory query processing engine called LevelHeaded.
LevelHeaded uses worst-case optimal joins as its core execution
mechanism for both BI and LA queries. With LevelHeaded,
we show how crucial optimizations for BI and LA queries can
be captured in a worst-case optimal query architecture. Using
these optimizations, LevelHeaded outperforms other relational
database engines (LogicBlox, MonetDB, and HyPer) by orders
of magnitude on standard LA benchmarks, while performing on
average within 31% of the best-of-breed BI (HyPer) and LA (Intel
MKL) solutions on their own benchmarks. Our results show that
such a single query processing architecture can be efficient on
both BI and LA queries.

I. INTRODUCTION

The efficient processing of classic SQL-style workloads

is no longer enough; machine learning algorithms are being

adopted at an explosive rate. In fact, Intel projects that by 2020

the hardware cycles dedicated to machine learning tasks will

grow by 12x, resulting in more servers running this than any

other workload [1]. As a result, there is a growing need for

query processing engines that are efficient on (1) the SQL-style

queries at the core of most business intelligence workloads and

(2) the linear algebra operations at the core of most machine

learning algorithms. In this work, we explore whether a new

query processing architecture can be efficient in both cases.

An increasingly popular workflow combines business in-

telligence (BI) and linear algebra (LA) queries by executing

SQL queries in a relational warehouse as a means to extract

feature sets for machine learning models. Unsurprisingly, these

SQL queries are similar to standard BI workloads: the data

is de-normalized (via joins), filtered, and aggregated to form

a single feature set [2]. Still, BI queries are best processed

in a relational database management system (RDBMS) and

linear algebra queries are best processed in a LA package. As

a result, there has been a flurry of activity around building

systems capable of unifying both BI and LA querying [3]–

[9]. At a high-level, existing approaches fall into one of three

classes:

• Exclusively using a relational engine. There are many in-

herent advantages to exclusively using a RDBMS to process

both BI and LA queries. Simplifying extract-transform-

load (ETL), increasing usability, and leveraging well-known

optimizations are just a few [5]. On the other hand, although

LA queries can be expressed using joins and aggregations,

executing these queries via the pairwise join algorithms in

standard RDBMSs is orders of magnitude slower than using

a LA package (see Section VI). Thus, others [5] have shown

that a RDBMS must be modified to compete on LA queries.

• Extending a linear algebra package. Linear algebra pack-

ages, like Intel MKL [10] and OpenBLAS [11], provide

high-performance through the low-level (and procedural)

[10], [11] Basic Linear Algebra Subprograms (BLAS) [12]

interface, and therefore lack the ability for high-level query-

ing. To address this, array databases with high-level query-

ing, like SciDB [4], have been proposed. Unfortunately,

array databases are highly specialized and are not designed

for general BI querying. As a result, support for SQL-style

BI querying [6], [13] has recently been combined with the

LA support found in popular packages like Spark’s MLlib

[14] and Scikit-learn [15]. Still, these solutions lack many

of the inherent benefits of a RDBMS, like a sophisticated

(shared-memory) query optimizer or efficient data structures

(e.g. indexes) for query execution, and therefore achieve

suboptimal performance on BI workloads (see Section VII).

• Combining a relational engine with a linear algebra pack-
age. To preserve the benefits of using a RDBMS on BI

queries, while also avoiding their pairwise join algorithms

on LA queries, others (e.g. Oracle’s UT NLA [8] and

MonetDB/NumPy [16]) have integrated a RDBMS with a

LA package. Still, these approaches just tack on an external

LA package to a RDBMS—they do not fully integrate it.

Therefore, users are forced to write low-level code wrapping

the LA package, and the LA computation is a black box

to the query optimizer. Even worse, this integration, while

straightforward on dense data, is complicated (and largely

unsolved) on sparse data because RDBMSs and sparse LA

packages use fundamentally different data layouts.

Therefore, existing approaches either (1) sacrifice the inher-

ent benefits of using only a RDBMS to process both classes

of queries, (2) are unable to process both classes of queries,

or (3) incur orders of magnitude performance gaps relative to

the best single-class approach.
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Fig. 1: The relative performance of popular engines and target

performance for LevelHeaded on business intelligence (BI)

and linear algebra (LA) queries.

In this work, we study an alternative approach to building

a RDBMS for both BI and LA querying. In particular, we

study using worst-case optimal join (WCOJ) algorithms [17]

as the mechanism to unify these query workloads. To do

this, we present a new in-memory query processing engine

called LevelHeaded. LevelHeaded uses a novel WCOJ query

architecture to execute both BI and LA queries. In contrast

to previous WCOJ engines [18], LevelHeaded is designed for

and evaluated on more than just graph queries. As such, Lev-

elHeaded is the first WCOJ engine to present an evaluation on

both BI and LA queries. In contrast to other query engines [4],

[5], [19]–[22], LevelHeaded competes with both LA packages

and RDBMSs on their own benchmarks (see Figure 1).

However, designing a new query processing engine that is

efficient on both BI and LA queries is a challenging task.

The recently proposed WCOJs at the core of this new query

processing architecture are most effective on the graph queries

where they have an asymptotic advantage over traditional

pairwise join algorithms. In contrast, pairwise join algorithms

are well-understood, and have the advantage of 45+ years

of proven constant factor optimizations for BI workloads

[20], [21], [23], [24]. Further, LA queries, which also have

the benefit of decades of optimizations [12], [25], [26], are

typically not a good match for the relational model. Therefore,

it is unclear whether they are good match for this new type

of relational query processing architecture.

Despite these challenges, we found that the unification of

two new techniques in a WCOJ architecture could enable it to

deliver efficient performance on both BI and LA queries. The

techniques LevelHeaded leverages are (1) a new mechanism

to translate general SQL queries to WCOJ query plans and

(2) a new cost-based query optimizer for WCOJs. To the best

of our knowledge, we are the first to identify and unify these

techniques in a WCOJ framework. The two new techniques at

the core of LevelHeaded in more detail are:

• SQL to GHDs (Generalized Hypertree Decompositions):
Attribute Elimination. Neither the theoretical literature [27]

nor the query compilation techniques for WCOJs [28]

maps directly to all SQL features. In LevelHeaded we

implement a practical extension of these techniques that

captures more general query workloads as well as the

classic query optimization of attribute elimination. Besides

providing up to 4x speedup on BI queries, a core artifact

of our attribute elimination implementation is that it enables

LevelHeaded to target BLAS packages on dense LA queries

at little to no execution cost. It is challenging to outperform

BLAS packages, like Intel MKL [10] on sparse data and is

usually not possible1 on dense data. Therefore, LevelHeaded

leverages attribute elimination to opaquely call Intel MKL

on dense LA queries while executing sparse LA queries as

pure aggregate-join queries (entirely in LevelHeaded).

• Cost-Based Optimizer: Attribute Ordering. WCOJ query

optimizers need to select an attribute order [17] in a similar

manner to how traditional query optimizers select a join

order [29]. With LevelHeaded, we present the first cost-

based optimizer to select an attribute order for a WCOJ

algorithm. Because this optimizer is the first of its kind, its

simplicity is crucial—our goal here is to provide a simple

but general foundation for WCOJ engines. Interestingly, we

show that such an optimizer must follow different heuristics

from what conventional wisdom for pairwise join optimizers

suggests (i.e. highest cardinality first). We describe how to

leverage these heuristics to provide a simple but accurate

cost-estimate that enables LevelHeaded to select attribute

orders that can be up to 8815x faster than attribute orders

that previous WCOJ engines [18] might select.

We evaluate LevelHeaded on standard BI and LA bench-

marks: seven TPC-H queries2 and four (two sparse, two dense)

LA kernels. These benchmarks are de-facto standards for BI

and LA engines. Thus, each engine we compare to is designed

to process one of these benchmarks efficiently by using

specific optimizations that enable high-performance on one

type of benchmark, but not necessarily the other. Therefore,

although these engines are the state-of-the-art solutions within

a benchmark, they are unable to remain competitive across

benchmarks. For example, HyPeR delivers high performance

on BI queries, but is not competitive on most LA workloads;

similarly, Intel MKL [10] delivers high performance on LA

queries, but does not provide support for BI querying. In

contrast, LevelHeaded is designed to be generic, maintaining

efficiency across the queries in both benchmarks.

Contribution Summary : This paper introduces the Lev-

elHeaded engine and demonstrates that its novel architecture

can be efficient across standard BI and LA benchmarks. Our

contributions and an outline are as follows.

• In Section II we describe the essential background nec-

essary to understand the LevelHeaded architecture which

we present in Section III. In particular, we describe how

LevelHeaded’s query and data model, which is different

from that of previous WCOJ engines [18], [22], preserves

the theoretical benefits of a WCOJ architecture and enables

it to efficiently process BI and LA queries.

• In Sections IV and V we present the core (logical and

physical) optimizations that we unify in a WCOJ query

architecture for the first time. In more detail, we present

1Intel MKL often gets peak hardware efficiency on dense LA [10].
2The TPC-H queries are run without the ORDER BY clause.
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the classic query optimization of attribute elimination in

Section IV and a cost-based optimizer for selecting an

attribute order for a WCOJ algorithm in Section V. We

show that these optimizations provide up to a three orders

of magnitude speedup on BI and LA queries.

• In Section VI we show that LevelHeaded can outperform

other relational engines by one order of magnitude on

standard BI and LA benchmarks while remaining on av-

erage3 within 31% of a best-of-breed solution within each

benchmark. For the first time, this evaluation validates that

a WCOJ architecture can maintain efficiency on both BI and

LA workloads. We argue that the inherent benefits of such

a unified (relational) design has the potential to outweigh

its minor performance overhead.

We believe LevelHeaded represents a first step in unifying

relational algebra and machine learning in a single engine.

As such, we extend LevelHeaded in Section VII to explore

some of the potential benefits of this approach on a full

application. We show here that LevelHeaded is up to one

order of magnitude faster than the popular (unified) solutions

of MonetDB/Scikit-learn, Pandas/Scikit-learn, and Spark on a

workload that combines SQL-style querying and a machine

learning algorithm. We hope LevelHeaded adds to the debate

surrounding the design of unified querying systems.

A. Related Work

LevelHeaded extends previous work in worst-case optimal

join processing (EmptyHeaded and LogicBlox), relational data

processing, and linear algebra processing.

EmptyHeaded: The techniques presented in Empty-

Headed [18], [30] alone are not enough for a WCOJ query

architecture to achieve competitive performance on general

(non-graph) queries. As such, LevelHeaded represents an

important advancement in WCOJ processing by presenting the

crucial optimizations for such an engine to be efficient on BI

and LA workloads. The core differences between LevelHeaded

and EmptyHeaded are (1) how LevelHeaded translates general

SQL queries to GHDs (Section IV) and (2) the cost-based

optimizer (Section IV) LevelHeaded uses to select an attribute

order for its WCOJ algorithm. Both of these new optimizations

for a WCOJ query architecture are enabled by LevelHeaded’s

query model and data model (Section III-C), which is less

restrictive than EmptyHeaded’s (e.g. only a single annotation

and limited operations); EmptyHeaded is simply unable to

capture most of the queries run in this paper. Although

LevelHeaded’s optimizations (Sections III-A, III-B, IV and V)

are simple, they are crucial on BI and LA workloads, and are

the first of their kind in this new line query processing.

LogicBlox: LogicBlox [22] is a full featured commercial

database engine built around similar worst-case optimal join

[31] and query compilation [32] algorithms. Still, a systematic

evaluation of the LogicBlox engine on BI and LA workloads is

yet to be presented. From our conversations with LogicBlox,

we learned that they often avoid using a WCOJ algorithm

3The arithmetic mean of the difference to the best competitor from Table II.

on these workloads in favor of more traditional approaches to

join processing. In contrast, LevelHeaded always uses a WCOJ

algorithm. Further, LogicBlox uses a query optimizer that has

similar benefits to LevelHeaded’s (see Section III-C), but does

so using custom algorithms [32]. In contrast, LevelHeaded

uses a generalization of these algorithms [28] that maps to

well-known techniques [33].

Relational Processing: Most relational database engines

[20], [21], [24] since System-R [34] have used the pairwise

(over relation) join algorithms that work with Sellinger-style

[34] query optimizers. This is fundamentally different from

the WCOJ (multiway over attribute) algorithm and GHD-

based query optimizer in LevelHeaded. Still, a significant

amount of work has focused on bringing LA to these pair-

wise relational data processing engines. Some have suggested

treating LA objects as first class citizens in a column store

[7]. Others, such as Oracle’s UTL NLA [8] and MonetDB

with embedded Python [16], allow users to call LA packages

through user defined functions. Still, the relational optimizers

in these approaches do not see, and therefore are incapable

of optimizing, the LA routines. Even worse, these packages

place significant burden on the user to make low-level library

calls. Finally, the SimSQL project [5] suggests that relational

engines can be modified in straightforward ways to accom-

modate LA workloads. Our goals are similar to SimSQL,

but explored with different mechanics. SimSQL studied the

necessary modifications for a classic database architecture to

support LA queries and was only evaluated on distributed LA

queries. Other high performance in-memory databases, like

HyPer, focus on classic OLTP and OLAP workloads and were

not designed with other workloads in mind.

Linear Algebra Processing: Researchers have long stud-

ied how to implement high-performance LA kernels. Intel

MKL [10] represents the culmination of this work on Intel

CPUs. Unsurprisingly, researchers have shown [35] that it

requires tedious low-level code optimizations to come near

the performance of a BLAS package like Intel MKL. As

a result, processing these queries in a traditional RDBMS

(using relational operators) is at least one order of magnitude

slower than using such packages (see Section VI). In response,

researchers have released array databases, like SciDB [4] and

TileDB [36], which provide high-level LA querying, often

by wrapping BLAS libraries. In contrast, our goal is not to

design an entirely different and specialized engine for these

workloads, but rather to design a single (relational) engine that

processes multiple classes of queries efficiently.

II. BACKGROUND

We briefly summarize the WCOJ algorithm [27] Level-

Headed uses as its core computational kernel, the generalized
hypertree decompositions (GHDs) [33] LevelHeaded uses to

represent its query plans, and the Aggregations and Joins over
Annotated Relations (AJAR) framework [28] LevelHeaded

uses to capture aggregate join queries. We present the essential

details informally and refer the reader to Aberger et al. [18]

for a complete survey.
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Algorithm 1 Generic Worst-Case Optimal Join Algorithm

1 / / I n p u t : Hypergraph H = (V,E) , and a t u p l e t .
2 / /
3 / / The o r d e r o f each v ∈ V c o r r e s p o n d s t o t h e o r d e r
4 / / t h a t a t t r i b u t e s are p r o c e s s e d . Re[t] r e t u r n s a l l
5 / / v a l u e s i n r e l a t i o n Re t h a t match t u p l e t .
6 Gener ic−J o i n (V ,E ,t ) :
7 / / Base cas e : f o r a s i n g l e v e r t e x , r e t u r n t h e
8 / / i n t e r s e c t i o n o f a l l r e l a t i o n s match ing t .
9 i f |V | = 1 t h e n re turn ∩e∈ERe[t] .

10 Le t I = {v1} / / t h e f i r s t a t t r i b u t e .
11 Q ← ∅ / / t h e r e t u r n v a l u e
12 / / I n t e r s e c t a l l r e l a t i o n s t h a t c o n t a i n v1 and
13 / / c o n t a i n t u p l e s t h a t agree w i t h t .
14 f o r e v e r y tv ∈ ∩e∈E:e�v1

πI(Re[t]) do
15 Qt ← Gener ic−J o i n (V − I , E , t :: tv )
16 Q ← Q ∪ {tv} ×Qt

17 re turn Q

A. Worst-Case Optimal Joins (WCOJs)

The generic WCOJ algorithm [27] shown in Algorithm 1

is the core computational kernel for all queries in the Level-

Headed engine. The generic WCOJ algorithm can be asymp-

totically better than any pairwise join algorithm [27]. For

any join query, the generic WCOJ algorithm’s execution time

can be upper bounded by the Atserias, Grohe, and Marx

(AGM) bound [37]. This can be easily computed when the

query is represented as a hypergraph. A hypergraph is a pair

H = (V,E), consisting of a nonempty set V of vertices, and

a set E of subsets of V (the hyperedges of H). Note that

vertices correspond to attributes and hyperedges correspond

to relations. Now, fix a hypergraph H and let x ∈ R|E|

be a vector indexed by edges. The AGM bound tells us

that the output size is upper bounded by
∏

e∈E |Re|xe where

∀v ∈ V,
∑

e∈E:e�v xe ≥ 1 and ∀e ∈ E, xe ≥ 0. To get

the tightest bound, we minimize
∏

e∈E |Re|xe subject to these

constraints.

B. Generalized Hypertree Decompositions (GHDs)

The LevelHeaded query compiler uses generalized hyper-
tree decompositions (GHDs) [33] to represent query plans. It

is useful to think of GHDs as an analog of relational algebra

for a WCOJ algorithm. Given a hypergraph H = (VH , EH),
a GHD is a tree T = (VT , ET ) and a mapping χ : VT → 2VH

that associates each node of the tree with a subset of vertices

in the hypergraph. The following properties must hold for a

GHD to be valid:

• Each edge of the hypergraph e ∈ EH must be a subset of

the vertices in one of the nodes of the tree, i.e. there exists

a tree node t ∈ VT such that e ⊆ χ(t).
• For each attribute v ∈ VH , the tree nodes to which it

belongs, {t | v ∈ χ(t)}, must form a connected subtree.

This is called the running intersection property.

GHDs are designed to capture the degree of cyclicity

in a query and therefore can be used to define non-trivial

cardinality estimates based on the sizes of the relations. We

formalize this idea by defining the fractional hypertree width
(FHW) of a GHD. Each node t of a GHD defines a subgraph

(V ′, E′). That is, V ′ is χ(t) and E′ is the set of edges that are

subsets of χ(t). To calculate the width of this node, we define
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Fig. 2: System overview with matrix multiplication input.

a linear program with one variable xe for each hyperedge

e ∈ E′, with the constraints
∑

e∈E′:e�v xe ≥ 1, ∀v ∈ V ′

and objective function
∑

e∈E′ xe. The FHW of a GHD is

then defined as the maximum width of all of the nodes VT .

The worst-case runtime of a GHD is bound by its FHW.

Therefore, LevelHeaded chooses a plan with the best worst-

case guarantee by choosing a GHD with the lowest FHW.

C. Capturing Aggregate Join Queries (AJAR)

Aggregate-join queries are common in both BI and LA

workloads. To capture aggregate-join queries, LevelHeaded

uses the AJAR framework [28]. AJAR extends the theoretical

results of GHDs to queries with aggregations by associating

each tuple in a one-to-one mapping with an annotation.

Aggregated annotations are members of a commutative semir-
ing, which is equipped with product and sum operators that

satisfy a set of properties (identity and annihilation, asso-

ciativity, commutativity, and distributivity). Therefore, when

relations are joined, the annotations on each relation are

multiplied together to form the annotation on the result.

Aggregations are expressed by an aggregation ordering α =
(α1,⊕1), (α2,⊕2), . . . of attributes and operators.

Using AJAR, one can pick a query plan with the best

worst-case guarantee by going through three phases: (1) Break

the input query into characteristic hypergraphs, which are

subgraphs of the input that can be decomposed to optimal

GHDs. (2) For each characteristic hypergraph all possible

decompositions are enumerated, and a decomposition that

minimizes the FHW is chosen. (3) The chosen GHDs are

combined to form an optimal GHD. To avoid unnecessary

intermediate results, LevelHeaded also compresses all final

GHDs with a FHW of one into a single node, as the query

plans here are always equivalent to running just a WCOJ

algorithm.

III. LEVELHEADED ENGINE

In this section we overview the data model, storage en-

gine, query compiler, and join algorithm at the core of the

LevelHeaded architecture. This overview presents the prelim-

inaries necessary to understand the optimizations presented

in Sections IV and V. LevelHeaded ingests structured data

from delimited files on disk and has a Python front-end that

accepts Pandas dataframes. The query language is a subset of

the SQL 2008 syntax with some standard limitations that we

detail in Section III-A. The input and output of each query

is a LevelHeaded table which we describe in Section III-B.

The SQL queries are translated to a GHD which we describe

in Section III-C. Finally, code is generated from the selected

GHD using a WCOJ algorithm which we describe in Sec-

tion III-C. The entire process is shown in Figure 2.
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Fig. 3: Storage of a matrix in a LevelHeaded trie.

Operation Description

Trie (R)
R[t]

Returns the set matching the key tuple
predicate t. The returned set is the
matching key values at trie level |t|+1.

R(t)
Accessor to all annotations
matching the key tuple predicate t.

R← R ∪ t Appends key tuple t to R.

Set (xs)
for x in xs Iterates through the elements x of a set xs.
xs ∩ ys Returns the intersection of sets xs and ys.

TABLE I: Core trie (and trie set) operations in LevelHeaded.

A. Data Model

The LevelHeaded data model is relational with some minor

restrictions. A core aspect of LevelHeaded’s data model is

that attributes are classified as either keys or annotations via

a user-defined schema. Keys in LevelHeaded correspond to

primary or foreign keys and are the only attributes which

can partake in a join. Keys cannot be aggregated. Annotations

are all other attributes and can be aggregated. Both keys and

annotations support filter predicates and GROUP BY operations.

LevelHeaded’s current implementation supports attributes with

types of int, long, float, double, and string. In many

ways LevelHeaded’s data model is similar to Google Mesa’s

[38] where a table schema specifies both a key and value space.

B. Storage Engine

LevelHeaded’s data model is tightly coupled with how it

stores relations. In LevelHeaded, keys are stored in a trie while

annotations are stored in flat columnar buffer (see Figure 3).

Key Attributes: All key attributes from a relation are

stored in a trie, which serves as the only physical index in

LevelHeaded. In the trie, each level is composed of sets of

order-preserved dictionary encoded (unsigned integer) values.

Like EmptyHeaded [18], LevelHeaded stores dense sets using

a bitset and sparse sets using unsigned integers. Each trie level

corresponds to one attribute and each attribute is stored in its

own buffer. As others have shown [31], a trie is a natural data

structure choice for a WCOJ algorithm. This is because a trie

implicity stores the required tuple matching operations (Re[t]
from Algorithm 1), which would have to be computed on the

fly if a row or column store was used. Therefore, when using

a trie, Algorithm 1 consists of nothing more than a series of

trie traversals and set intersections.

Annotation Attributes: Annotations are the associated

data values attached to the last level of a trie (1-1 mapping).

In LevelHeaded, each annotation is stored in its own buffer

that is attached to the trie. LevelHeaded supports multiple

annotations, and each can be reached from any level of the

trie (core differences from EmptyHeaded).

C. Query Compiler
LevelHeaded’s query compiler leverages the techniques

presented in Section II to convert an input SQL query to

executable code using the three step process shown in Figure 4:

1) Translate the input query to a query hypergraph. Us-

ing the definition of a query hypergraph from Section II-A,

LevelHeaded’s process for translating generic SQL queries is

described in Section IV-A.

2) Translate the query hypergraph to a GHD. LevelHeaded

uses the three phase process described in Section II-C to

produce the GHDs with the best worst-case guarantee (lowest

FHW). Unfortunately, this often produces many theoretically

equivalent GHDs to choose from. To address this, Level-

Headed presents a simple series of heuristics to select among

GHDs with the best worst-case guarantee in Section IV-B.

3) Translate the GHD to executable code using the generic
WCOJ algorithm. Like EmptyHeaded, the generic WCOJ

algorithm is used to compute each node of the GHD-based

plan, and Yannakakis’ [39] algorithm is used to communicate

results between GHD nodes (a GHD is an acyclic plan). The

code generation for each of these phases uses the storage

engine operations presented in Table I. Note that the bottleneck

operation in Algorithm 1 is a set intersection.

D. Implementation Details

BLAS Integration: On dense LA kernels LevelHeaded

calls Intel MKL [10] for its processing of the annotation

values. This is done because (1) Intel MKL is highly optimized

to get peak hardware efficiency on dense kernels and (2)

LevelHeaded requires no data transformation to integrate with

dense BLAS libraries (like Intel MKL). LevelHeaded can

seamlessly integrate with any package supporting the BLAS

interface (like OpenBLAS [11]), but calls Intel MKL in this

paper because it is highly optimized for the Intel CPUs that

we use. LevelHeaded does not integrate with a BLAS library

on sparse kernels because (1) sparse BLAS support is not yet

standard (e.g. no support in OpenBLAS) and (2) the (normally)

accepted compressed sparse row format (CSR) would require

an expensive data transformation (see Table IV).

Parallelization: LevelHeaded utilizes multiple cores by

naively parallelizing the outermost for loop from Algorithm 1.

To do this LevelHeaded provides a parfor operator in addi-

tion to the for operator from Table I to iterate over set values.

IV. SQL TO AJAR GHDS

The AJAR query compilation techniques [28] presented in

Section III-C are able to capture a wide range of domains,

including linear algebra, message passing, and graph queries

[18], [28], [30]. However, most of this work has been theo-

retical, and none of the current literature demonstrates how

to capture general SQL-style queries in such a framework.4 In

this section we show how to extend this work to more complex

queries. In particular we describe how LevelHeaded translates

4Although others [40] have presented ad-hoc techniques to translate SQL to hypertrees
for pairwise join optimizers, this work does not encompass the recent theoretical advances
[28], [32] for capturing aggregate-join queries.
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SELECT n_n, sum(l_e * (1 - l_d)) as rev
FROM c, o, l, s, n, r
WHERE c_ck = o_ck and l_ok = o_ok
and l_sk = s_sk and c_nk = s_nk
and s_nk = n_nk and n_rk = r_rk
and r_n = 'ASIA’
and o_d >= date '1994-01-01’
and o_d < date '1995-01-01’
GROUP BY n_n

r � ��������	�
 r
for nk in ∏n_nk nation 

if | ∏r_rk r  ∩ ∏n_rk n[nk]| > 0 :
node1← node1� (nk)

o � ���� ��'1994-01-01’ ������� ��'1995-01-01’ o
for ok in ∏o_ok o ∩ ∏l_ok l 
for nk in ∏nk node1 ∩ ∏s_nk s ∩ ∏c_nk c      
for sk in ∏l_sk l[ok] ∩ ∏s_sk s[nk] 
for ck in ∏c_ck c[nk] ∩ ∏o_ck o[ok]

n_n = ∏n_n n(nk),  l_e = ∏l_e l(ok,sk), l_d = ∏l_d l(ok,sk)
out ← out � (n_n)
out(n_n) += l_e * (1 – l_d)

�������

���	��
���	�������	
�

region(regionkey)
nation(nationkey, regionkey)

�������������������

�����������	�
������

supplier(suppkey, nationkey)
nation(nationkey, regionkey)
customer(custkey, nationkey)
lineitem(orderkey, suppkey)
group by(n_name)

����������

���

����
������
��
���
	�

����������

for i in ∏i m1
for j in ∏j m2

for k in ∏k m1[i] ∩ ∏k m2[j]
out ← out � (i, j)
out(i, j) += ∏v m1(j )* ∏v m2(j))

���

���	��
���	�������	
�

i m1 m2

m1(i, k)
m2(k, j)

% CREATE TABLE matrix(
%        i INT, j INT, v FLOAT);
SELECT m1.i, m2.j, sum(m1.v*m1.v)
FROM  matrix as m1, matrix as m2
WHERE m1.k = m2.k
GROUP BY m1.i, m2.j

custkey orderkey

suppkeynationkeyregionkey

region

nation

orders

lineitem

supplier

customer

Metadata: { region ��������, 
orders ������������,
nation ������� } Metadata: {}

k j

Fig. 4: Illustration of the core components of LevelHeaded on TPC-H query 5 and matrix multiplication. The queries are

expressed in SQL, translated to a hypergraph, the hypergraph is used to generate an optimal generalized hypertree decomposition

(GHD) query plan, and code instantiating the WCOJ algorithm is generated from the resulting query plan. Relation names and

attribute names are abbreviated (e.g. ‘nk’ = ‘nationkey’, ‘n’ = ‘nation’, ...) in the SQL and generated code for readability.

generic SQL queries to hypergraphs in Section IV-A. Using

this translation, we show how the well-known optimization of

attribute elimination is captured both logically and physically

in LevelHeaded. In Section IV-B we describe the manner in

which LevelHeaded selects a GHD. We argue that with this

LevelHeaded represents the first practical implementation of

these techniques capable of capturing general SQL workloads.

A. SQL to Hypergraph Translation

We demonstrate how certain features of SQL, such as

complex expressions inside aggregation functions, can be

translated to operations on annotated relations using a series

of simple rules to construct query hypergraphs. The rules

LevelHeaded uses to translate a SQL query to a hypergraph

H = (V,E) and an aggregation ordering α are as follows:

1) The set of vertices V in the hypergraph contains all

of the keys in the SQL query. The set of hyperedges E is

each relation in the SQL query. All attributes in a equi-join

condition are mapped to the same attribute in V .

2) All key attributes that do not appear in the output of the

query must be in the aggregation ordering α as the annotations

associated with these keys correspond to the aggregated values.

3) If only the columns of a single relation appear inside

of an aggregation function, the expression inside of the

aggregation function is the annotation of that relation. If

none of the relation’s columns appear inside an aggregation

function, the relation’s annotation is the identity element. If the

inner expression of an aggregation function touches multiple

relations, those relations must be in the same GHD node where

the expression is the output annotation.

4) The rules above do not capture annotations which are

not aggregated, so these annotations are added to a metadata

container M that associates them to the hyperedge (relation)

from which they originate.

Example 4.1: Consider how these rules capture TPC-H
query 5 from Figure 4 in a LevelHeaded query hypergraph.

By Rule 1, the equality join in this query is captured
in the set of vertices (V ) and hyperedges (E) shown
in the hypergraph in Figure 4. The columns c_custkey

and o_custkey must be mapped to the same vertex in
“custkey” ∈ V . Similarly, the columns l_orderkey and
o_orderkey are mapped to the vertex “orderkey”, the
columns l_suppkey and s_suppkey are mapped to the ver-
tex “suppkey”, the columns c_nationkey, s_nationkey,
and n_nationkey are mapped to the vertex “nationkey”,
the columns n_regionkey and r_regionkey are mapped to
the vertex “regionkey”.

By Rule 2, a valid aggregation ordering is:
α = [regionkey, nationkey, suppkey, custkey, orderkey]

with the aggregation operator Σ (the order is irrelevant here).
To apply Rule 3, consider the expression inside the SUM

aggregation function, on TPC-H query 5. Only columns on the
lineitem table are involved in this expression, so the anno-
tations on the lineitem table are this expression for each
tuple. The orders and customer tables are annotated with
the identity element (no columns in aggregation expressions).

By Rule 4, the hypergraph does not capture the attributes
n_name, o_orderdate, or r_name but our metadata con-
tainer M does. M here is the following: n_name ↔ nation,
r_name ↔ region, o_orderdate ↔ orders.
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Attribute Elimination: The rules above only add the at-

tributes that are used in the query to the hypergraph. Although

this elimination of unused attributes is obvious, ensuring

this physically in LevelHeaded required a complete redesign

from the tries used in EmptyHeaded. To do this we ensured

that any number of levels from the trie can be used during

query execution. This means that annotations can be reached

individually from any level of the trie. Further, the annotations

are all stored in individual data buffers (like a column store) to

ensure that they can be loaded in isolation. These fundamental

differences with EmptyHeaded enable LevelHeaded to support

attribute elimination both logically and physically. This is

essential on dense LA kernels because it enables LevelHeaded

to store each dense annotation in a BLAS compatible buffer.

B. GHD Optimization

After applying the rules in Section IV-A, a GHD is selected

using the process described in Section III-C. Still, Level-

Headed needs a way to select among multiple GHDs that

the theory cannot distinguish. In this section we explain how

LevelHeaded adapts the theoretical definition of GHDs to both

select and produce practical query plans.

Choosing Among GHDs with the same FHW: For many

queries, multiple GHDs have the same FHW. Therefore, a

practical implementation must also include principled methods

to choose between query plans with the same worst-case

guarantee. Fortunately, there are three intuitive characteristics

of GHD-based query plans that makes this choice relatively

simple (and cheap): (1) the smaller a GHD is (in terms of

number of nodes and height), the quicker it can be executed

(less generated code), (2) fewer intermediate results (shared

vertices between nodes) results in faster execution time, and

(3) the lower selection constraints appear in a query plan

corresponds to how early work is eliminated in the query plan.

Therefore, LevelHeaded uses the following order of heuristics

to choose between GHDs with the same FHW:

1) Minimize |VT | (number of nodes in the tree).

2) Minimize the depth (longest path from root to leaf).

3) Minimize the number of shared vertices between nodes.

4) Maximize the depth of selections.

Although most of the queries in this paper are single-node

GHDs, on the two node TPC-H query 5, using these rules to

select a GHD results in a 3x performance advantage over a

GHD (with the same FHW) that violates the rules above.

V. COST-BASED OPTIMIZER

After a GHD-based query plan is produced using the process

described in Sections III-C and IV, LevelHeaded needs to

select an attribute order for the WCOJ algorithm. Similar to

the classic query optimization problem of selecting a join

order [29], WCOJ attribute ordering can result in orders

of magnitude performance differences on the same query.

Unfortunately, the known techniques for estimating the cost

of join orders are designed for Selinger-style [34] query

optimizers using pairwise join algorithms—not a GHD-based

query optimizer with a WCOJ algorithm. In this section we

present the first cost-based optimizer for the generic WCOJ

algorithm and show that this it selects attribute orders that

can provide up to a three orders of magnitude speedup over

attribute orders that EmptyHeaded could select.

Optimizer Overview: LevelHeaded’s cost-based opti-

mizer selects a key attribute order for each node in a GHD-

based query plan. Like EmptyHeaded [18], LevelHeaded re-

quires that materialized key attributes appear before those that

are projected away (with one important exception described in

Section V-A2) and that materialized attributes always adhere

to some global ordering (e.g. if attribute ‘a’ is before attribute

‘b’ in one GHD node order, then ’a’ must be before ’b’ in

all GHD orders). To assign an attribute order to each GHD

node, LevelHeaded’s cost-based optimizer: (1) traverses the

GHD in a top-down fashion, (2) considers all attribute orders

adhering to the previously described criteria at each node, and

(3) selects the attribute order with the lowest cost estimate.

For each order, a cost estimate is computed based on two

characteristics of the generic WCOJ algorithm: (1) the algo-

rithm processes one attribute at a time and (2) set intersection

is the bottleneck operator. As such, LevelHeaded assigns a

set intersection cost (icost) and a cardinality weight (Sec-

tion V-B) to each key attribute (or vertex) in the hypergraph

of a GHD node. Using this, the cost estimate for a given key

attribute (or hypergraph vertex) order [v0,v1,...,v|V |] is:

cost =

|V |∑
i=0

(icost(vi)× weight(vi))

The remainder of this section discusses how the icosts

(Section V-A) and weights (Section V-B) are derived.

A. Intersection Cost

The bottleneck of the generic WCOJ algorithm is set inter-

section operations. In this section, we describe how to derive

a simple cost estimate, called icost, for the set intersections

in the generic WCOJ algorithm.

1) Cost Metric: Recall that the sets in LevelHeaded tries

are stored using an unsigned integer layout (uint) if they

are sparse and a bitset layout (bs) if they are dense, a design

inherited from EmptyHeaded. Thus, the intersection algorithm

used is different depending on the data layout of the sets. These

different layouts have a large impact on the set intersection

performance, even with similar cardinality sets. For example,

Figure 5a, shows that a bs ∩ bs is roughly 50x faster than

a uint ∩ uint with the same cardinality sets. Therefore,

LevelHeaded uses the results from Figure 5a to assign the

following icosts:
icost(bs ∩ bs) = 1, icost(bs ∩ uint) = 10,

icost(uint ∩ uint) = 50

Unfortunately, it is too expensive for the query compiler

to check (or track) the layout of each set during query

compilation—set layouts are chosen dynamically during data

ingestion and a single trie can have millions of sets. On the

other hand, it is intuitive that the first level of the trie is likely a

dense set while the sets at the remaining levels are increasingly

sparse. This is because the set in first trie level holds an entire
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(a) The performance of uint ∩ uint,
uint ∩ bs, and bs ∩ bs intersections
with cardinalities of 1e6 and 1e7. This
is used to derive each intersection cost
(icost) estimate.
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(b) The performance and cost of two at-
tribute orders for sparse matrix multipli-
cation on the nlp240 matrix. The cost 50
order runs out of memory (oom) on a
machine with 1TB of RAM.
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(c) The performance and cost of four at-
tribute orders for the expensive GHD node
on TPC-H query 5 at SF 10. Attributes are:
o = orderkey, c = custkey, s = suppkey, and
n = nationkey.

Fig. 5: Cost estimation experiments.

column of values, whereas the sets in the lower levels contain

only the values that match the previous columns values. This

held true in practice leading to Observation 5.1.

Observation 5.1: The set in the first level of a trie is likely
a bs while the sets in the remaining levels are likely uints.

Thus, given a key attribute order [v0,...,v|V |] (where each

vi ∈ V ), the LevelHeaded optimizer assigns an icost to each

vi, in order of appearance, using the following method which

leverages Observation 5.1:

• For each edge ej with node vi, assign l(ej) (where

l=layout), to either uint or bs. As a reminder, edges are

relations and vertices are attributes. Thus, for each relation

this assignment guesses one data layout for all of the

relation’s vi sets. If ej has been assigned with a previous

vertex vk where k < i, l(ej) = uint (not the first trie level),

otherwise l(ej) = bs.

• Compute the cost of intersecting the vi attribute from each

edge (relation) ej . For a vertex with two edges, the pairwise

icost is used. For a vertex with N edges, where N > 2,

the icost is the sum of pairwise icosts where the bs

sets are always processed first. For example, when N = 3
and l(e0) ≤ l(e1) ≤ l(e2) where bs < uint, icost =
icost(l(e0)∩ l(e1))+icost(l(l(e0)∩ l(e1))∩ l(e2)). Note,

uint = l(bs ∩ uint).

Example 5.1: Consider the attribute order [orderkey,
custkey, nationkey, suppkey] for one of the GHD nodes
in TPC-H query 5 (see Figure 4). The orderkey vertex
is assigned an icost of 1 as it is classified with [bs ∩
bs] intersections. The custkey vertex is assigned an icost

of 10, classified with [uint ∩ uint] intersections. The
nationkey vertex is assigned an icost of 11, classified
with [bs ∩ bs ∩ uint] intersections. Finally, the suppkey
vertex is assigned an icost of 50, classified with [uint ∩
uint] intersections.

Finally, in the special case of a completely dense relation,

the LevelHeaded optimizer assigns an icost of 0 because no

set intersection is necessary in this case. This is essential to

estimate the cost of LA queries properly.
2) Relaxing the Materialized Attributes First Rule: An

interesting aspect of the intersection cost metric is that the

cheapest key attribute order could have materialized key at-

tributes come after those which are projected away.To support

such key attribute orders, the execution engine must be able to

combine children (in the trie) of projected away key attributes

using a set union or GROUP BY (to materialize the result sets).

Unfortunately, it is difficult to design an efficient data structure

to union more than one level of a trie (materialized key

attribute) in parallel (e.g. use a massive 2-dimensional buffer

or incur expensive merging costs). Therefore, EmptyHeaded

kept its design simple and never considered relaxing the rule

that materialized attributes must appear before those which are

projected away. In LevelHeaded we relax this rule by allowing

1-attribute unions on keys when it can lower the icost.

Within a GHD node, LevelHeaded relaxes the materialized

attributes first rule under the following conditions:
1) The last attribute is projected away.

2) The second to last attribute is materialized.

3) The icost is improved by swapping the two attributes.
These conditions ensure that 1-attribute union will only be

introduced when the icost can be lowered.

Example 5.2: Consider the matrix multiplication query and
its unrolling of the generic WCOJ algorithm for an attribute
order of [i,j,k] shown in Figure 4. This attribute order has
a cost 50 [uint ∩ uint] assigned to the k attribute.

Now consider an attribute order [i,k,j]. Here a cost 10
[uint ∩ bs] is assigned to k and the unrolling of the generic
WCOJ algorithm is the following:
for i ∈ πim1 do

sj ← ∅
for k ∈ πkm1[i] ∩ πkm2 do

for j ∈ πjm2[k] do
sj ← sj ∪ (j, πvm1(i, k) ∗ πvm2(k, j))

∀(j, v) ∈ sj : out ← out ∪ (i, j)
∀(j, v) ∈ sj : out(i, j)+ = v

This lower cost attribute order recovers the same loop
ordering as Intel MKL on sparse matrix multiplication [41],
which is essential to run sparse matrix multiplication without
running out of memory (see Figure 5b).

B. Weights

Like classic query optimizers, LevelHeaded also tracks the

cardinality of each relation as this influences the icosts
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for the generic WCOJ algorithm. Figure 5 shows the un-

surprising fact that larger cardinality sets result in longer

intersection times. To take this into account when computing

a cost estimate LevelHeaded assigns weights to each vertex

using Observation 5.2, which directly contradicts conventional

wisdom from pairwise optimizers:

Observation 5.2: The highest cardinality attributes should
be processed first in the generic WCOJ algorithm. This enables
these attributes to partake in fewer intersections (outermost
loops) and ensures that they are a higher trie levels (more
likely bss with lower icosts).

LevelHeaded’s goal when assigning weights is to follow

Observation 5.2 by assigning high cardinality attributes heavier

weights so that they appear earlier in the attribute order. To do

this, LevelHeaded assigns a cardinality score to each queried

relation and uses this to weight to each attribute.
Score: LevelHeaded maintains a cardinality score for

each relation in a query which is just the relation’s cardinality
relative to the highest cardinality relation in the query. The
score (out of 100) for a relation ri is:

score = ceiling

( |ri|
|rheavy| × 100

)

where rheavy is the highest cardinality relation in the query.

Weight: To assign a weight to each vertex, LevelHeaded

uses the highest score edge (or relation) with the vertex when

a high selectivity (equality) constraint is present, otherwise

LevelHeaded takes the lowest score edge (or relation). The

intuition for using the highest score edge (or relation) with a

high selectivity constraint is that this relation represents the

amount of work that could be filtered (or eliminated) at this

vertex (or attribute). The intuition for otherwise taking the

lowest score edge (or relation) is that the output cardinality of

an intersection is at most the size of the smallest set.

Example 5.3: Consider TPC-H Q5 at scale factor 10. The
cardinality score for each relation here is:

score(lineitem) = 100, score(orders) = 26, score(customer)= 3,
score(region) = 1, score(supplier) = 1, score(nation) = 1

The weight for each vertex is (region is equality selected):
weight(orderkey) = min(26,100), weight(custkey) = min(3,26)
weight(suppkey) = min(1,100), weight(nationkey) = min(1,1,3)

weight(regionkey) = max(1,1)
These weights are then used to get costs shown in Figure 5c.

VI. EXPERIMENTS

We compare LevelHeaded to state-of-the-art relational

database management engines and LA packages on standard

BI and LA benchmark queries. We show that LevelHeaded is

able to compete within 2.5x of these engines, while sometimes

outperforming them, and that the techniques from Sections IV

and V can provide up to a three orders of magnitude speedup.

This section validates that a WCOJ architecture can serve as

a practical solution for both BI and LA queries.

A. Setup

We describe the experimental setup for all experiments.

Environment: LevelHeaded is a shared memory engine

that runs and is evaluated on a single node server. As such,

we ran all experiments on a single machine with a total of

56 cores on four Intel Xeon E7-4850 v3 CPUs and 1 TB of

RAM. For all engines, we chose buffer and heap sizes that

were at least one order of magnitude larger than the dataset

to avoid garbage collection and swapping data out to disk.

Relational Comparisons: We compare to HyPer, Mon-

etDB, and LogicBlox on all queries to highlight the per-

formance of other relational databases. Unlike LevelHeaded,

these engines are unable to compete within one order of

magnitude of the best approaches on BI and LA queries. We

compare to HyPer v0.5.0 [21] as HyPer is a state-of-the-art in-

memory RDBMS design. We also compare to the MonetDB

Dec2016-SP5 release. MonetDB is a popular columnar store

database engine and is a widely used baseline [20]. Finally,

we compare to LogicBlox v4.4.5 as LogicBlox is the first

general purpose commercial engine to provide similar worst-

case optimal join guarantees [22]. Our setup of LogicBlox

was aided by a LogicBlox engineer. HyPer, MonetDB, and

LogicBlox are full-featured commercial strength systems (sup-

port transactions, etc.) and therefore incur inefficiencies that

LevelHeaded does not.

Linear Algebra Package Comparison: We use Intel MKL

v121.3.0.109 as the specialized linear algebra baseline. This

is the best baseline for LA performance on the Intel CPUs we

use in this paper.

Metrics: For end-to-end performance, we measure the

wall-clock time for each system to execute each query. We

repeat each measurement seven times, eliminate the lowest

and the highest value, and report the average. This measure-

ment excludes the time used for data loading, data statistics

collection, and index creation for all engines. To minimize

unavoidable differences with disk-based engines (LogicBlox

and MonetDB) we place each database in the tmpfs in-memory

file system and collect hot runs back-to-back. Between mea-

surements for the in-memory engines (HyPer and Intel MKL),

we wipe the caches and re-load the data to avoid the use of

intermediate results.

B. Experimental Results

We show that LevelHeaded can compete within 2x of HyPer

on seven TPC-H queries and within 2.5x of Intel MKL on four

LA queries, while outperforming MonetDB and LogicBlox by

up to two orders of magnitude.

1) Business Intelligence: On seven queries from the TPC-H

benchmark we show that LevelHeaded can compete within 2x

of HyPer while outperforming MonetDB by up to one order of

magnitude and LogicBlox by up to two orders of magnitude.

Datasets: We run the TPC-H queries at scale factors 1,

10, and 100. We stopped at TPC-H 100 as in-memory engines,

such as HyPer, often use 2-3x more memory than the size of

the input database during loading—therefore approaching the

memory limit of our machine.

Queries: We choose TPC-H queries 1, 3, 5, 6, 8, 9 and 10

to benchmark, as these queries exercise the core operations of
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Query Data Baseline LevelHeaded Intel MKL HyPer MonetDB LogicBlox

TPC-H

Q1
SF 1 12ms 1.79x - 1x 30.59x 74.17x
SF 10 84ms 1.73x - 1x 17.86x 23.45x
SF100 608ms 1.78x - 1x 80.43x 26.12x

Q3
SF 1 29ms 1.11x - 1x 5.56x 48.28x
SF 10 111ms 1x - 1.45x 9.88x 32.59x
SF100 963ms 1.01x - 1x 9.76x 10.99x

Q5
SF 1 19ms 1.49x - 1x 6.54x 109x
SF 10 92ms 1.40x - 1x 4.84x 55.33x
SF100 867ms 1.21x - 1x 4.04x 21.33x

Q6
SF 1 5ms 1.73x - 1x 12.27x 270x
SF 10 34ms 1.50x - 1x 6.65x 101x
SF100 283ms 1.61x - 1x 7.42x 73.43x

Q8
SF 1 16ms 1x - 2.78x 7.96x 72.77x
SF 10 45ms 1.74x - 1x 15.16x 73.78x
SF100 1.06ms 1.88x - 1x 21.55x 25.02x

Q9
SF 1 27ms 1x - 1.84x 4.23x 97.62x
SF 10 115ms 1x - 4.05x 4.14x 57.84x
SF100 1020ms 1x - 5.71x 5.19x 21.78x

Q10
SF 1 32ms 1.36x - 1x 5.88x 31.56x
SF 10 196ms 1.26x - 1x 6.12x 18.06x
SF100 869ms 1.78x - 1x 9.9x 7.79x

Linear Algebra

SMV
Harbor 2.66ms 1x 2.89x 10.81x 30.80x 89.74x
HV15R 68.01ms 2.43x 1x 25.82x 26.47x 40.72x
NLP240 114.97ms 1.49x 1x 17.23x 53.93x 113x

SMM
Harbor 110ms 1.63x 1x 13.10x 27.27x 112x
HV15R 18.79s 1.35x 1x oom t/o 48.11x
NLP240 1.92s 2.44x 1x 4.91x t/o 78.70x

DMV
8192 7.96ms 1x 1x 4.34x 55.14x 121x
12288 13.5ms 1x 1x 5.78x 88.89x 330x
16384 23.45ms 1x 1x 18.13x 51.18x 587x

DMM
8192 2.76s 1.02x 1x oom t/o t/o
12288 4.43s 1.01x 1x oom t/o t/o
16384 9.29s 1.01x 1x oom t/o t/o

TABLE II: Runtime for the best performing engine (“Baseline”) and relative runtime for comparison engines. ‘-’ indicates

that the engine did not provide support for the query. ‘t/o’ indicates the system timed out and ran for over 30 minutes. ‘oom’

indicates the system ran out of memory.

BI querying and also contain interesting join patterns (except

1 and 6). The TPC-H queries are run without the ORDER BY

clause. TPC-H queries 1 and 6 do not contain a join and

demonstrate that although LevelHeaded is designed for join

queries, it can also compete on scan queries.
Discussion: In Table II we show that LevelHeaded can

outperform MonetDB by up to 80x and LogicBlox by up to

270x while remaining within 1.88x of the highly optimized

HyPer database. Unsurprisingly, the queries where Level-

Headed is the farthest off the performance of the HyPer engine

are TPC-H queries 1 and 8 where the output cardinality is

small and the runtime is dominated by the GROUP BY opera-

tion. On queries 3 and 9, where the output cardinality is larger

(and closer to worst-case), LevelHeaded is able to compete

within 11% of HyPer and sometimes outperforms it. It should

be noted that on TPC-H query 9, where LevelHeaded has the

largest performance advantage compared to HyPer, HyPer runs

2.91x faster when the ORDER BY clause is used in the query—

making its performance within 39% of LevelHeaded.
2) Linear Algebra: We show that LevelHeaded can com-

pete within 2.5x of Intel MKL while outperforming HyPer by

more than 18x on LA benchmarks.

Datasets: We evaluate LA queries on three dense matri-

ces and three sparse matrices. The first sparse matrix dataset

we use is the Harbor dataset, which is a 3D CFD model

of the Charleston Harbor [42] containing 46,835 rows and

columns and 2,329,092 nonzeros. The second sparse matrix

dataset we use is the HV15R dataset, which is a CFD matrix

describing a 3D engine fan [42] containing 2,017,169 rows and

columns and 283,073,458 nonzeros. The final sparse matrix

dataset we use is the nlpkkt240 dataset [43], which is a

symmetric indefinite KKT matrix containing 27,993,600 rows

and columns and 401,232,976 nonzeros. For dense matrices,

we use synthetic matrices with dimensions of 8192x8192

(8192), 12288x12288 (12288), and 16384x16384 (16384).
Queries: We run matrix-vector multiplication and matrix

multiplication queries on both sparse (SMV, SMM) and dense

(DMV, DMM) matrices. These queries were chosen because

they are simple to express using joins and aggregations in

SQL and are the core operations for most machine learning

algorithms. Further, Intel MKL is specifically designed to

process these queries and, as a result, achieves the largest

speedups over using a RDBMS here. Like others [41], for

both SMM and DMM we multiply the matrix by itself.
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Dataset Query LH -Attr. Elim. -Attr. Ord.

TPC-H

SF 10 Q1 145ms 2.54x -
SF 10 Q3 111ms 2.46x 1.17x
SF 10 Q5 128ms 1.46x 72.68x
SF 10 Q6 51ms 4.82x -
SF 10 Q8 78ms - 8815x
SF 10 Q9 115ms - 18.96x
SF 10 Q10 246ms 1.70x 8.32x

LA

hv15r SMV 165ms - -
hv15r SMM 25.44s - oom
nlp240 SMV 171ms - -
nlp240 SMM 4.69s - oom
16384 DMV 13.50ms 1.96x -
16384 DMM 4.43s 500x -

TABLE III: Runtime for LevelHeaded (LH) and relative per-

formance without optimizations on TPC-H and LA queries.

‘SF 10’ indicates scale factor 10. ‘-’ indicates no effect on the

query. ‘oom’ indicates the system ran out of memory.

Discussion: Table II shows that LevelHeaded is able

to compete within 2.44x of Intel MKL on both sparse and

dense LA queries. On dense data, LevelHeaded uses the

attribute elimination optimization from Section IV to store

dense annotations in single buffers that are BLAS compatible

and code generates to Intel MKL. Still, MKL produces only

the output annotation, not the key values, so LevelHeaded

incurs a minor performance penalty (<2%) for producing the

key values. On sparse data, LevelHeaded is able to compete

with MKL when executing these LA queries as pure aggregate-

join queries. To do this, the attribute order optimization from

Section IV was essential. In contrast, other relational designs

fall flat on these LA queries. Namely, HyPer usually runs out

of memory on the matrix multiplication query and, on the

queries which finish, is often one order of magnitude slower

than Intel MKL. Similarly, LogicBlox and MonetDB are at

least one order of magnitude slower than Intel MKL.

C. Micro-Benchmarking Results

We break down the performance impact of each optimiza-

tion presented in Sections IV and V.

Attribute Elimination: Table III shows that attribute elim-

ination can enable up to a 4.82x speedup on the TPC-H queries

and up to a 500x speedup on dense LA queries. Attribute

elimination is crucial on most TPC-H queries, as these queries

typically touch a small number of attributes from schemas with

many attributes. Unsurprisingly, Table III shows that attribute

elimination provides the largest benefit on the scan TPC-H

queries (1 and 6) because it allows us to scan less data. On

dense LA queries, LevelHeaded calls Intel MKL with little

overhead because attribute elimination enables us to store each

dense annotation in a BLAS acceptable buffer. As Table II

shows, this yields up to a 500x speedup over processing these

queries purely in LevelHeaded.

Attribute Order: As shown in Table III, the cost-based

attribute ordering optimizer presented in Section V can enable

up to a 8815x performance advantage on TPC-H queries and

enables LevelHeaded to run sparse matrix multiplication as a
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Fig. 6: Performance of engines on the voter classification

application which combines a SQL query, feature encoding,

and the training of a machine learning model.

Dataset Conversion SMV Ratio

Harbor 0.039s 0.0026s 15.00
HV15R 5.76s 0.17s 33.88
nlp240 7.11s 0.17s 41.82

TABLE IV: Runtime for dataset conversion, SMV query time

in LevelHeaded, and corresponding ratio (conversion/query).

The conversion time measures Intel MKL’s mkl_scsrcoo

library call which is the (optimistic) time it takes to convert a

column store to an acceptable sparse BLAS format. The ratio

is the number of times LevelHeaded could run SMV while a

column store is converting the data.

join query without running out of memory. Table III shows the

difference between the best-cost and the worst-cost attribute

orders. The most interesting queries here are TPC-H query

5 and TPC-H query 8. On TPC-H query 5, it is essential

that the high cardinality orderkey attribute appears first. On

TPC-H query 8, it is essential that the partkey attribute,

which was connected to an equality selection, appears first.

The process of assigning weights to the intersection costs in

Section V-B ensures that orders satisfying these constraints are

chosen. Finally, the cost-based attribute ordering optimizer is

also crucial on sparse matrix multiplication. Here it is essential

that the lower cost attribute order, with a projected away

attribute before one that is materialized, is selected. This order

not only prevents a high cost intersection, but eliminates the

materialization of annotation values that are not in the output.

VII. EXTENSION

We extend LevelHeaded to show that such a unified query

processing architecture could enable faster end-to-end ap-

plications. To do this, we add the ability for LevelHeaded

to process workloads that combine SQL queries and full

machine learning algorithms (as described in [44]). We show

on a full-fledged application that LevelHeaded can be one

order of magnitude faster than the popular solutions of Spark

v2.0.0, MonetDB Dec20165/Scikit-learn v0.17.1, and Pandas

v0.18.1/Scikit-learn v0.17.1 (using the setup from Section VI).

Application: We run a voter classification application

[45] that joins and filters two tables to create a single feature

set which is then used to train a logistic regression model

5Development build with embedded Python [16].
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for five iterations. This application is a pipeline workload that

consists of three pipeline phases: (1) a SQL-processing phase,

(2) a feature engineering phase where categorical variables are

encoded, and (3) a machine learning phase. The dataset [45]

consists of two tables: (1) one with information such as gender

and age for 7,503,555 voters and (2) one with information

about the 2,751 precincts that the voters were registered in.

Performance: Figure 6 shows that LevelHeaded outper-

forms Spark, MonetDB, and Pandas on the voter classification

application by up to one order of magnitude. This is largely

due to LevelHeaded’s optimized shared-memory SQL pro-

cessing and ability to minimize data transformations between

the SQL and training phase. To expand on the cost of data

transformations a bit further, in Table IV we show the cost

of converting from a column store to the CSR format used

by most sparse library packages. This transformation is not

necessary in LevelHeaded as it always uses a single, trie-based

data structure. As a result, Table IV shows that up to 41 SMV

queries can be run in LevelHeaded in the time that it takes for a

column store to convert the data to a BLAS compatible format.

Similarly, on the voter classification application LevelHeaded

avoids expensive data transformations (in the encoding phase)

by using its trie-based data structure for all phases.

VIII. CONCLUSIONS

This paper introduced the LevelHeaded engine and demon-

strated that a query architecture built around WCOJs can be

efficient on both standard BI and LA benchmarks. We showed

that LevelHeaded outperforms other relational engines by at

least one order of magnitude on LA queries, while remaining

on average within 31% of best-of-the-breed solutions on BI

and LA benchmark queries. Our results are promising and

suggest that such a query architecture could serve as the

foundation for future unified query engines.
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