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OBSERVATION

OLAP workloads perform sequential scans on large 
segments of read-only data. 
→ The DBMS only needs to find individual tuples to "stitch" 

them back together.

OLTP workloads use indexes to find individual 
tuples without performing sequential scans.
→ Tree-based indexes (B+Trees) are meant for queries with 

low selectivity predicates.
→ Also need to accommodate incremental updates.
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SEQUENTIAL SCAN OPTIMIZATIONS

Data Encoding / Compression

Prefetching

Parallelization

Clustering / Sorting

Late Materialization

Materialized Views / Result Caching

Data Skipping

Data Parallelization / Vectorization

Code Specialization / Compilation
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TODAY’S AGENDA

Storage Models

Persistent Data Formats
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STORAGE MODELS

A DBMS's storage model specifies how it physically 
organizes tuples on disk and in memory. 

Choice #1: N-ary Storage Model (NSM)

Choice #2: Decomposition Storage Model (DSM)

Choice #3: Hybrid Storage Model (PAX)
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SIGMOD 2008
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N-ARY STORAGE MODEL (NSM)

The DBMS stores (almost) all the attributes for a 
single tuple contiguously in a single page.

Ideal for OLTP workloads where txns tend to access 
individual entities and insert-heavy workloads.
→ Use the tuple-at-a-time iterator processing model.

NSM database page sizes are typically some constant 
multiple of 4 KB hardware pages.
→ Example: Oracle (4 KB), Postgres (8 KB), MySQL (16 KB)
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DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores a single attribute for all tuples 
contiguously in a block of data.

Ideal for OLAP workloads where read-only queries 
perform large scans over a subset of the table’s 
attributes.
→ Use a batched vectorized processing model.

File sizes are larger (100s of MBs), but it may still 
organize tuples within the file into smaller groups.
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DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g., 
nulls) in separate arrays of fixed-
length values.
→ Most systems identify unique physical 

tuples using offsets into these arrays.

Maintain a separate file per attribute 
with a dedicated header area for meta-
data about entire column.
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DSM: TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets
→ Each value is the same length for an 

attribute. Use simple arithmetic to jump to 
an offset to find a tuple.

→ Need to convert variable-length data into 
fixed-length values.

Choice #2: Embedded Tuple Ids
→ Each value is stored with its tuple id in a 

column.
→ Need auxiliary data structures to find 

offset within a column for a given tuple id.
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DSM: VARIABLE-LENGTH DATA

Padding variable-length fields to ensure they are 
fixed-length is wasteful, especially for large 
attributes.

A better approach is to use dictionary compression to 
convert repetitive variable-length data into fixed-
length values (typically 32-bit integers).

Still need to handle semi-structured data…

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

OBSERVATION

OLAP queries almost never access a single column 
in a table by itself.
→ At some point during query execution, the DBMS must get 

other columns and stitch the original tuple back together.

But the DBMS needs to store data in a columnar 
format for storage + execution benefits.

We need columnar scheme that still stores 
attributes separately but keeps the data for each 
tuple physically close to each other…

11

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

PAX STORAGE MODEL

Partition Attributes Across (PAX) is a hybrid 
storage model that vertically partitions attributes 
within a database page.
→ This is what Paraquet and Orc use.

The goal is to get the benefit of faster processing on 
columnar storage while retaining the spatial locality
benefits of row storage.
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DATA PAGE LAYOUTS FOR RELATIONAL DATABASES 
ON DEEP MEMORY HIERARCHIES
VLDB JOURNAL 2002
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PAX: PHYSICAL ORGANIZATION

Horizontally partition data into row 
groups. Then vertically partition their 
attributes into column chunks.

Global meta-data directory contains 
offsets to the file's row groups.
→ This is stored in the footer if the file is 

immutable (Parquet, Orc).

Each row group contains its own 
meta-data header about its contents.
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OBSERVATION

Most DBMSs use a proprietary on-disk binary file 
format for persistent data.The only way to share 
data between systems is to convert data into a 
common text-based format
→ Examples: CSV, JSON, XML

There are open-source binary file formats that make 
it easier to access data across systems and libraries 
for extracting data from files.
→ Libraries provide an iterator interface to retrieve (batched) 

columns from files.
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OPEN-SOURCE PERSISTENT DATA FORMATS

HDF5 (1998)
→ Multi-dimensional arrays for

scientific workloads.

Apache Avro (2009)
→ Row-oriented format for Hadoop that 

replace SequenceFiles.

Apache Parquet (2013)
→ Compressed columnar storage from 

Cloudera/Twitter for Impala.
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Apache ORC (2013)
→ Compressed columnar storage from 

Meta for Apache Hive.

Apache CarbonData (2016)
→ Compressed columnar storage with 

indexes from Huawei.

Apache Arrow (2016)
→ In-memory compressed columnar 

storage from Pandas/Dremio.
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FORMAT DESIGN DECISIONS

File Meta-Data

Format Layout

Type System

Encoding Schemes

Block Compression

Filters

Nested Data
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AN EMPIRICAL EVALUATION OF 
COLUMNAR STORAGE FORMATS
VLDB 2023

A DEEP DIVE INTO COMMON OPEN 
FORMATS FOR ANALYTICAL DBMSS
VLDB 2023
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FILE META-DATA

Files are self-contained to increase portability. 
They contain all the necessary information to 
interpret their contents without external data 
dependencies.

Each file maintains global meta-data (usually in its 
footer) about its contents:
→ Table Schema (e.g., Thrift, Protobuf)
→ Row Group Offsets / Length
→ Tuple Counts / Zone Maps
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FORMAT LAYOUT

The most common formats use the PAX storage 
model that splits data row groups that contain one 
or more column chunks.

The size of row groups varies per implementation 
and makes compute/memory trade-offs:
→ Parquet: Number of tuples (e.g., 1 million).
→ Orc: Physical Storage Size (e.g., 250 MB).
→ Arrow: Number of tuples (e.g., 1024*1024).

18

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

FORMAT LAYOUT

The most common formats use the PAX storage 
model that splits data row groups that contain one 
or more column chunks.

The size of row groups varies per implementation 
and makes compute/memory trade-offs:
→ Parquet: Number of tuples (e.g., 1 million).
→ Orc: Physical Storage Size (e.g., 250 MB).
→ Arrow: Number of tuples (e.g., 1024*1024).

18

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/1j8SdS7s_NY?t=705


15-721 (Spring 2024)

TYPE SYSTEM

Defines the data types that the format supports.
→ Physical: Low-level byte representation (e.g., IEEE-754).
→ Logical: Auxiliary types that map to physical types.

Formats vary in the complexity of their type 
systems that determine how much upstream 
producer / consumers need to implement:
→ Parquet: Minimal # of physical types. Logical types 

provide annotations that describe interpretation of 
primitive type data.

→ ORC: More complete set of physical types. 

19
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ENCODING SCHEMES

An encoding scheme specifies how the format 
stores the bytes for contiguous/related data.
→ Can apply multiple encoding schemes on top of each other 

to further improve compression.

Dictionary Encoding

Run-Length Encoding (RLE)

Bitpacking

Delta Encoding

Frame-of-Reference (FOR)

20
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DICTIONARY COMPRESSION

Replace frequent values with smaller fixed-length 
codes and then maintain a mapping (dictionary) 
from the codes to the original values.
→ Codes could either be positions (using hash table) or byte 

offsets into dictionary.
→ Optionally sort values in dictionary.
→ Further compress dictionary and encoded columns.

Format must handle when the number of distinct 
values (NDV) in a column chunk is too large.
→ Parquet: Max dictionary size (1 MB).
→ ORC: Pre-compute NDV and disable if too large.

21

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

DICTIONARY COMPRESSION
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DICTIONARY COMPRESSION

Design Decision #1: Eligible Data Types
→ Parquet: All data types
→ ORC: Only strings

Design Decision #2: Compress Encoded Data
→ Parquet: RLE + Bitpacking
→ ORC: RLE, Delta Encoding, Bitpacking, FOR

Design Decision #3: Expose Dictionary
→ Parquet: Not supported
→ ORC: Not supported

23
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BLOCK COMPRESSION

Compress data using a general-purpose algorithm. 
Scope of compression is only based on the data 
provided as input.
→ LZO (1996), LZ4 (2011), Snappy (2011), Zstd (2015)

Considerations
→ Computational overhead
→ Compress vs. decompress speed
→ Data opaqueness
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FILTERS

Zone Maps:
→ Maintain min/max values per column at the file-level and 

row group-level.
→ By default, both Parquet and ORC store zone maps in the 

header of each row group.

Bloom Filters:
→ Track the existence of values for each column in a row 

group. More effective if values are clustered.
→ Parquet uses Split Block Bloom Filters from Impala.
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NESTED DATA

Real-world data sets often contain semi-structured 
objects (e.g., JSON, Protobufs).

A file format will want to encode the contents of 
these objects as if they were regular columns.

Approach #1: Record Shredding

Approach #2: Length+Presence Encoding

26

DREMEL: A DECADE OF INTERACTIVE 
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NESTED DATA: SHREDDING

Store paths in nested structure as 
separate columns.

Maintain repetition and definition
fields as separate columns to avoid 
having to retrieve/access ancestor 
attributes.

27

message Document {
  required int64 DocId;
  repeated group Name {
    repeated group Language {
      required string Code;
      optional string Country;
    }
    optional string Url;
  }
}

DocId: 10
Name:
  Language:
    Code: 'en-us'
    Country: 'us'
  Language:
    Code: 'en'
  Url: 'http://A'
Name:
  Url: 'http://B'
Name:
  Language:
   Code: 'en-gb'
   Country: 'gb'

DocId: 20
Name:
  Url: 'http://C'

Source: Sergey Melnik
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NESTED DATA: LENGTH+PRESENCE

Store paths in nested structure as 
separate columns but maintain 
additional columns to track the 
number of entries at each path
level (length) and whether a
key exists at that level for a
record (presence).
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EXPERIMENTAL EVALUATION

Analyze real-world data sets to extract key 
properties. Then create a microbenchmark to create 
synthetic data sets and workloads that vary these 
properties.

Use Arrow's C++ Parquet/ORC access libraries for 
most benchmarks.
→ Wildly different completeness / optimizations across 

implementations.
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AN EMPIRICAL EVALUATION OF 
COLUMNAR STORAGE FORMATS
VLDB 2023
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COMPRESSION RATIO
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DECODING PERFORMANCE
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LESSONS

Dictionary encoding is effective for all data 
types and not just strings.
→ Real-world data is repetitive and converting arbitrary data 

to integers in a small domain enables better compression.

Simplistic encoding schemes are better on 
modern hardware.
→ Determining which encoding scheme a chunk is using at 

runtime causes branch mispredictions.

Avoid general-purpose block compression.
→ Network/disk are no longer the bottleneck relative to CPU 

performance.
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PARTING THOUGHTS

Hardware has changed in the last 10 years that we 
need to reassess how a DBMS should store data.

Although widely successful and deployed, there are 
several deficiencies with Parquet/ORC.
→ No statistics (e.g., histograms, sketches).
→ No incremental schema deserialization.
→ Numerous implementations of varying completeness.
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NEXT CLASS

Better encoding schemes

34
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