
ADVANCED
DATABASE

SYSTEMS

Andy Pavlo
CMU 15-721
Spring 202402

Data
Formats &
Encoding I

https://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/
https://db.cs.cmu.edu/

15-721 (Spring 2024)

OBSERVATION

OLAP workloads perform sequential scans on large
segments of read-only data.
→ The DBMS only needs to find individual tuples to "stitch"

them back together.

OLTP workloads use indexes to find individual
tuples without performing sequential scans.
→ Tree-based indexes (B+Trees) are meant for queries with

low selectivity predicates.
→ Also need to accommodate incremental updates.

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SEQUENTIAL SCAN OPTIMIZATIONS

Data Encoding / Compression

Prefetching

Parallelization

Clustering / Sorting

Late Materialization

Materialized Views / Result Caching

Data Skipping

Data Parallelization / Vectorization

Code Specialization / Compilation

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SEQUENTIAL SCAN OPTIMIZATIONS

Data Encoding / Compression

Parallelization

Clustering / Sorting

Late Materialization

Data Skipping

Data Parallelization / Vectorization

Code Specialization / Compilation

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TODAY’S AGENDA

Storage Models

Persistent Data Formats

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

STORAGE MODELS

A DBMS's storage model specifies how it physically
organizes tuples on disk and in memory.

Choice #1: N-ary Storage Model (NSM)

Choice #2: Decomposition Storage Model (DSM)

Choice #3: Hybrid Storage Model (PAX)

5

COLUMN-STORES VS. ROW-STORES: HOW
DIFFERENT ARE THEY REALLY?
SIGMOD 2008

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2023/papers/03-storage/p967-abadi.pdf
https://15721.courses.cs.cmu.edu/spring2023/papers/03-storage/p967-abadi.pdf

15-721 (Spring 2024)

N-ARY STORAGE MODEL (NSM)

The DBMS stores (almost) all the attributes for a
single tuple contiguously in a single page.

Ideal for OLTP workloads where txns tend to access
individual entities and insert-heavy workloads.
→ Use the tuple-at-a-time iterator processing model.

NSM database page sizes are typically some constant
multiple of 4 KB hardware pages.
→ Example: Oracle (4 KB), Postgres (8 KB), MySQL (16 KB)

6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores a single attribute for all tuples
contiguously in a block of data.

Ideal for OLAP workloads where read-only queries
perform large scans over a subset of the table’s
attributes.
→ Use a batched vectorized processing model.

File sizes are larger (100s of MBs), but it may still
organize tuples within the file into smaller groups.

7

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g.,
nulls) in separate arrays of fixed-
length values.
→ Most systems identify unique physical

tuples using offsets into these arrays.

Maintain a separate file per attribute
with a dedicated header area for meta-
data about entire column.

8

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

meta-data null bitmap
a0 a1 a2 a3 a4 a5

F
il

e
 #

1

meta-data null bitmap
b0 b1 b2 b3 b4 b5

F
il

e
 #

2

meta-data null bitmap

c5
c0 c1 c2 c3 c4

F
il

e
 #

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DSM: TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets
→ Each value is the same length for an

attribute. Use simple arithmetic to jump to
an offset to find a tuple.

→ Need to convert variable-length data into
fixed-length values.

Choice #2: Embedded Tuple Ids
→ Each value is stored with its tuple id in a

column.
→ Need auxiliary data structures to find

offset within a column for a given tuple id.

9

0
1
2
3

A B C D

A

0
1
2
3

B

0
1
2
3

C

0
1
2
3

D

0
1
2
3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DSM: VARIABLE-LENGTH DATA

Padding variable-length fields to ensure they are
fixed-length is wasteful, especially for large
attributes.

A better approach is to use dictionary compression to
convert repetitive variable-length data into fixed-
length values (typically 32-bit integers).

Still need to handle semi-structured data…

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OBSERVATION

OLAP queries almost never access a single column
in a table by itself.
→ At some point during query execution, the DBMS must get

other columns and stitch the original tuple back together.

But the DBMS needs to store data in a columnar
format for storage + execution benefits.

We need columnar scheme that still stores
attributes separately but keeps the data for each
tuple physically close to each other…

11

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PAX STORAGE MODEL

Partition Attributes Across (PAX) is a hybrid
storage model that vertically partitions attributes
within a database page.
→ This is what Paraquet and Orc use.

The goal is to get the benefit of faster processing on
columnar storage while retaining the spatial locality
benefits of row storage.

12

DATA PAGE LAYOUTS FOR RELATIONAL DATABASES
ON DEEP MEMORY HIERARCHIES
VLDB JOURNAL 2002

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/10.1007/s00778-002-0074-9
https://dl.acm.org/doi/10.1007/s00778-002-0074-9

15-721 (Spring 2024)

PAX: PHYSICAL ORGANIZATION

Horizontally partition data into row
groups. Then vertically partition their
attributes into column chunks.

Global meta-data directory contains
offsets to the file's row groups.
→ This is stored in the footer if the file is

immutable (Parquet, Orc).

Each row group contains its own
meta-data header about its contents.

13

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

meta-data

P
A

X
 F

il
e

a0 a1 a2 b0 b1 b2

c0 c1 c2

meta-data

R
ow

 G
rou

p

Column
Chunk

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PAX: PHYSICAL ORGANIZATION

Horizontally partition data into row
groups. Then vertically partition their
attributes into column chunks.

Global meta-data directory contains
offsets to the file's row groups.
→ This is stored in the footer if the file is

immutable (Parquet, Orc).

Each row group contains its own
meta-data header about its contents.

13

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

meta-data

P
A

X
 F

il
e

a0 a1 a2 b0 b1 b2

c0 c1 c2

meta-data

R
ow

 G
rou

p

a3 a4 a5 b3 b4 b5

c3 c4 c5

meta-data

R
ow

 G
rou

p

Column
Chunk

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OBSERVATION

Most DBMSs use a proprietary on-disk binary file
format for persistent data.The only way to share
data between systems is to convert data into a
common text-based format
→ Examples: CSV, JSON, XML

There are open-source binary file formats that make
it easier to access data across systems and libraries
for extracting data from files.
→ Libraries provide an iterator interface to retrieve (batched)

columns from files.

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OPEN-SOURCE PERSISTENT DATA FORMATS

HDF5 (1998)
→ Multi-dimensional arrays for

scientific workloads.

Apache Avro (2009)
→ Row-oriented format for Hadoop that

replace SequenceFiles.

Apache Parquet (2013)
→ Compressed columnar storage from

Cloudera/Twitter for Impala.

15

Apache ORC (2013)
→ Compressed columnar storage from

Meta for Apache Hive.

Apache CarbonData (2016)
→ Compressed columnar storage with

indexes from Huawei.

Apache Arrow (2016)
→ In-memory compressed columnar

storage from Pandas/Dremio.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://avro.apache.org/
https://cwiki.apache.org/confluence/display/HADOOP2/sequencefile
https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://arrow.apache.org/

15-721 (Spring 2024)

FORMAT DESIGN DECISIONS

File Meta-Data

Format Layout

Type System

Encoding Schemes

Block Compression

Filters

Nested Data

16

AN EMPIRICAL EVALUATION OF
COLUMNAR STORAGE FORMATS
VLDB 2023

A DEEP DIVE INTO COMMON OPEN
FORMATS FOR ANALYTICAL DBMSS
VLDB 2023

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://doi.org/10.14778/3626292.3626298
https://doi.org/10.14778/3626292.3626298
https://doi.org/10.14778/3611479.3611507
https://doi.org/10.14778/3611479.3611507

15-721 (Spring 2024)

FILE META-DATA

Files are self-contained to increase portability.
They contain all the necessary information to
interpret their contents without external data
dependencies.

Each file maintains global meta-data (usually in its
footer) about its contents:
→ Table Schema (e.g., Thrift, Protobuf)
→ Row Group Offsets / Length
→ Tuple Counts / Zone Maps

17

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Apache_Thrift
https://en.wikipedia.org/wiki/Protocol_Buffers

15-721 (Spring 2024)

FORMAT LAYOUT

The most common formats use the PAX storage
model that splits data row groups that contain one
or more column chunks.

The size of row groups varies per implementation
and makes compute/memory trade-offs:
→ Parquet: Number of tuples (e.g., 1 million).
→ Orc: Physical Storage Size (e.g., 250 MB).
→ Arrow: Number of tuples (e.g., 1024*1024).

18

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

FORMAT LAYOUT

The most common formats use the PAX storage
model that splits data row groups that contain one
or more column chunks.

The size of row groups varies per implementation
and makes compute/memory trade-offs:
→ Parquet: Number of tuples (e.g., 1 million).
→ Orc: Physical Storage Size (e.g., 250 MB).
→ Arrow: Number of tuples (e.g., 1024*1024).

18

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/1j8SdS7s_NY?t=705

15-721 (Spring 2024)

TYPE SYSTEM

Defines the data types that the format supports.
→ Physical: Low-level byte representation (e.g., IEEE-754).
→ Logical: Auxiliary types that map to physical types.

Formats vary in the complexity of their type
systems that determine how much upstream
producer / consumers need to implement:
→ Parquet: Minimal # of physical types. Logical types

provide annotations that describe interpretation of
primitive type data.

→ ORC: More complete set of physical types.

19

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/IEEE_754

15-721 (Spring 2024)

TYPE SYSTEM

Defines the data types that the format supports.
→ Physical: Low-level byte representation (e.g., IEEE-754).
→ Logical: Auxiliary types that map to physical types.

Formats vary in the complexity of their type
systems that determine how much upstream
producer / consumers need to implement:
→ Parquet: Minimal # of physical types. Logical types

provide annotations that describe interpretation of
primitive type data.

→ ORC: More complete set of physical types.

19

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/IEEE_754
https://parquet.apache.org/docs/file-format/types/

15-721 (Spring 2024)

TYPE SYSTEM

Defines the data types that the format supports.
→ Physical: Low-level byte representation (e.g., IEEE-754).
→ Logical: Auxiliary types that map to physical types.

Formats vary in the complexity of their type
systems that determine how much upstream
producer / consumers need to implement:
→ Parquet: Minimal # of physical types. Logical types

provide annotations that describe interpretation of
primitive type data.

→ ORC: More complete set of physical types.

19

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/IEEE_754
https://parquet.apache.org/docs/file-format/types/
https://orc.apache.org/docs/types.html

15-721 (Spring 2024)

ENCODING SCHEMES

An encoding scheme specifies how the format
stores the bytes for contiguous/related data.
→ Can apply multiple encoding schemes on top of each other

to further improve compression.

Dictionary Encoding

Run-Length Encoding (RLE)

Bitpacking

Delta Encoding

Frame-of-Reference (FOR)

20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DICTIONARY COMPRESSION

Replace frequent values with smaller fixed-length
codes and then maintain a mapping (dictionary)
from the codes to the original values.
→ Codes could either be positions (using hash table) or byte

offsets into dictionary.
→ Optionally sort values in dictionary.
→ Further compress dictionary and encoded columns.

Format must handle when the number of distinct
values (NDV) in a column chunk is too large.
→ Parquet: Max dictionary size (1 MB).
→ ORC: Pre-compute NDV and disable if too large.

21

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DICTIONARY COMPRESSION

22

Original Data

name
William
Andrea
Andy
Matt
Andy
Andy
Andy
Andy

Unsorted Dictionary

value
Andrea
William
Andy
Matt

len
6
7
4
4

pos
1
0
2
3
2
2
2
2

offset

7
0
13
17
13
13
13
13

vs.

Sorted Dictionary

value
Andrea
Andy
Matt

William

len
6
4
4
7

pos
3
0
1
2
1
1
1
1

offset

14
0
7
11
7
7
7
7

vs.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DICTIONARY COMPRESSION

Design Decision #1: Eligible Data Types
→ Parquet: All data types
→ ORC: Only strings

Design Decision #2: Compress Encoded Data
→ Parquet: RLE + Bitpacking
→ ORC: RLE, Delta Encoding, Bitpacking, FOR

Design Decision #3: Expose Dictionary
→ Parquet: Not supported
→ ORC: Not supported

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DICTIONARY COMPRESSION

Design Decision #1: Eligible Data Types
→ Parquet: All data types
→ ORC: Only strings

Design Decision #2: Compress Encoded Data
→ Parquet: RLE + Bitpacking
→ ORC: RLE, Delta Encoding, Bitpacking, FOR

Design Decision #3: Expose Dictionary
→ Parquet: Not supported
→ ORC: Not supported

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.vldb.org/pvldb/vol12/p2022-chattopadhyay.pdf
https://www.vldb.org/pvldb/vol12/p2022-chattopadhyay.pdf

15-721 (Spring 2024)

BLOCK COMPRESSION

Compress data using a general-purpose algorithm.
Scope of compression is only based on the data
provided as input.
→ LZO (1996), LZ4 (2011), Snappy (2011), Zstd (2015)

Considerations
→ Computational overhead
→ Compress vs. decompress speed
→ Data opaqueness

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Snappy_(software)
https://en.wikipedia.org/wiki/Zstandard

15-721 (Spring 2024)

FILTERS

Zone Maps:
→ Maintain min/max values per column at the file-level and

row group-level.
→ By default, both Parquet and ORC store zone maps in the

header of each row group.

Bloom Filters:
→ Track the existence of values for each column in a row

group. More effective if values are clustered.
→ Parquet uses Split Block Bloom Filters from Impala.

25

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://arxiv.org/abs/2101.01719

15-721 (Spring 2024)

NESTED DATA

Real-world data sets often contain semi-structured
objects (e.g., JSON, Protobufs).

A file format will want to encode the contents of
these objects as if they were regular columns.

Approach #1: Record Shredding

Approach #2: Length+Presence Encoding

26

DREMEL: A DECADE OF INTERACTIVE
SQL ANALYSIS AT WEB SCALE
VLDB 2020

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

NESTED DATA: SHREDDING

Store paths in nested structure as
separate columns.

Maintain repetition and definition
fields as separate columns to avoid
having to retrieve/access ancestor
attributes.

27

message Document {
 required int64 DocId;
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country;
 }
 optional string Url;
 }
}

DocId: 10
Name:
 Language:
 Code: 'en-us'
 Country: 'us'
 Language:
 Code: 'en'
 Url: 'http://A'
Name:
 Url: 'http://B'
Name:
 Language:
 Code: 'en-gb'
 Country: 'gb'

DocId: 20
Name:
 Url: 'http://C'

Source: Sergey Melnik

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

NESTED DATA: LENGTH+PRESENCE

Store paths in nested structure as
separate columns but maintain
additional columns to track the
number of entries at each path
level (length) and whether a
key exists at that level for a
record (presence).

28

message Document {
 required int64 DocId;
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country;
 }
 optional string Url;
 }
}

DocId: 10
Name:
 Language:
 Code: 'en-us'
 Country: 'us'
 Language:
 Code: 'en'
 Url: 'http://A'
Name:
 Url: 'http://B'
Name:
 Language:
 Code: 'en-gb'
 Country: 'gb'

DocId: 20
Name:
 Url: 'http://C'

Source: Sergey Melnik

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

EXPERIMENTAL EVALUATION

Analyze real-world data sets to extract key
properties. Then create a microbenchmark to create
synthetic data sets and workloads that vary these
properties.

Use Arrow's C++ Parquet/ORC access libraries for
most benchmarks.
→ Wildly different completeness / optimizations across

implementations.

29

AN EMPIRICAL EVALUATION OF
COLUMNAR STORAGE FORMATS
VLDB 2023

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://doi.org/10.14778/3626292.3626298
https://doi.org/10.14778/3626292.3626298

15-721 (Spring 2024)

COMPRESSION RATIO

30

21

189

27

107

17

75

23

179

34

99

23

96

0

50

100

150

200

bi classic core geo log ml

F
il

e
Si

ze
 (

M
B

)
Real-World Data Sets

Source: Xinyu Zheng

Parquet ORC

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://xinyuzeng.github.io/

15-721 (Spring 2024)

DECODING PERFORMANCE

31

144

450

166

311

140

233229

575

294
324

266

538

0

200

400

600

T
im

e
(m

s)
Real-World Data Sets

24

68

28

58

24
3430

123

32 32 33 38

0

50

100

150

T
im

e
(m

s)

Parquet ORC

Scans Selects

Source: Xinyu Zheng

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://xinyuzeng.github.io/

15-721 (Spring 2024)

LESSONS

Dictionary encoding is effective for all data
types and not just strings.
→ Real-world data is repetitive and converting arbitrary data

to integers in a small domain enables better compression.

Simplistic encoding schemes are better on
modern hardware.
→ Determining which encoding scheme a chunk is using at

runtime causes branch mispredictions.

Avoid general-purpose block compression.
→ Network/disk are no longer the bottleneck relative to CPU

performance.

32

Source: Xinyu Zheng

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://xinyuzeng.github.io/

15-721 (Spring 2024)

PARTING THOUGHTS

Hardware has changed in the last 10 years that we
need to reassess how a DBMS should store data.

Although widely successful and deployed, there are
several deficiencies with Parquet/ORC.
→ No statistics (e.g., histograms, sketches).
→ No incremental schema deserialization.
→ Numerous implementations of varying completeness.

33

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

NEXT CLASS

Better encoding schemes

34

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

	Introduction
	Slide 1: Data Formats & Encoding I
	Slide 2: OBSERVATION
	Slide 3: SEQUENTIAL SCAN OPTIMIZATIONS
	Slide 4: SEQUENTIAL SCAN OPTIMIZATIONS
	Slide 5: TODAY’S AGENDA

	Storage Models
	Slide 6: STORAGE MODELS
	Slide 7: N-ARY STORAGE MODEL (NSM)
	Slide 8: DECOMPOSITION STORAGE MODEL (DSM)
	Slide 9: DSM: PHYSICAL ORGANIZATION
	Slide 10: DSM: TUPLE IDENTIFICATION
	Slide 11: DSM: VARIABLE-LENGTH DATA
	Slide 12: OBSERVATION
	Slide 13: PAX STORAGE MODEL
	Slide 14: PAX: PHYSICAL ORGANIZATION
	Slide 15: PAX: PHYSICAL ORGANIZATION

	File Formats
	Slide 16: OBSERVATION
	Slide 17: OPEN-SOURCE PERSISTENT DATA FORMATS
	Slide 18: FORMAT DESIGN DECISIONS
	Slide 19: FILE META-DATA
	Slide 20: FORMAT LAYOUT
	Slide 21: FORMAT LAYOUT
	Slide 22: TYPE SYSTEM
	Slide 23: TYPE SYSTEM
	Slide 24: TYPE SYSTEM
	Slide 25: ENCODING SCHEMES
	Slide 26: DICTIONARY COMPRESSION
	Slide 27: DICTIONARY COMPRESSION
	Slide 28: DICTIONARY COMPRESSION
	Slide 29: DICTIONARY COMPRESSION
	Slide 30: BLOCK COMPRESSION
	Slide 31: FILTERS

	Nested Data
	Slide 32: NESTED DATA
	Slide 33: NESTED DATA: SHREDDING
	Slide 34: NESTED DATA: LENGTH+PRESENCE

	Evaluation
	Slide 35: EXPERIMENTAL EVALUATION
	Slide 36: COMPRESSION RATIO
	Slide 37: DECODING PERFORMANCE
	Slide 38: LESSONS

	Conclusion
	Slide 39: PARTING THOUGHTS
	Slide 40: NEXT CLASS

