
ADVANCED
DATABASE

SYSTEMS

Andy Pavlo
CMU 15-721
Spring 202403

Data
Formats &

Encoding II

https://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/
https://db.cs.cmu.edu/

15-721 (Spring 2024)

LAST CLASS

Storage Models (NSM, DSM, PAX)

Open-Source Data File Formats
→ File Meta-Data
→ Format Layout
→ Type System
→ Encoding Schemes
→ Block Compression
→ Zone Maps + Bloom Filters
→ Nested Data (Shredding vs. Presence)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

NESTED DATA

Real-world data sets often contain semi-structured
objects (e.g., JSON, Protobufs).

A file format will want to encode the contents of
these objects as if they were regular columns.

Approach #1: Record Shredding

Approach #2: Length+Presence Encoding

3

DREMEL: A DECADE OF INTERACTIVE
SQL ANALYSIS AT WEB SCALE
VLDB 2020

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

Shredded Columns

NESTED DATA: SHREDDING

Store paths in nested structure as
separate columns with additional
meta-data about paths.

Definition Level: How many
optional elements are defined in
the path to an attribute.

Repetition Level: How many
times a structure has been
repeated.

4

message Document {
 required int64 DocId;
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country;
 }
 optional string Url;
 }
}

DocId: 10
Name:
 Language:
 Code: 'en-us'
 Country: 'us'
 Language:
 Code: 'en'
 Url: 'http://A'
Name:
 Url: 'http://B'
Name:
 Language:
 Code: 'en-gb'
 Country: 'gb'

Source: Sergey Melnik

DocID

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

Shredded Columns

NESTED DATA: SHREDDING

Store paths in nested structure as
separate columns with additional
meta-data about paths.

Definition Level: How many
optional elements are defined in
the path to an attribute.

Repetition Level: How many
times a structure has been
repeated.

4

message Document {
 required int64 DocId;
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country;
 }
 optional string Url;
 }
}

DocId: 10
Name:
 Language:
 Code: 'en-us'
 Country: 'us'
 Language:
 Code: 'en'
 Url: 'http://A'
Name:
 Url: 'http://B'
Name:
 Language:
 Code: 'en-gb'
 Country: 'gb'

Source: Sergey Melnik

DocID

Name.Language.Code

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

Shredded Columns

NESTED DATA: SHREDDING

Store paths in nested structure as
separate columns with additional
meta-data about paths.

Definition Level: How many
optional elements are defined in
the path to an attribute.

Repetition Level: How many
times a structure has been
repeated.

4

message Document {
 required int64 DocId;
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country;
 }
 optional string Url;
 }
}

DocId: 10
Name:
 Language:
 Code: 'en-us'
 Country: 'us'
 Language:
 Code: 'en'
 Url: 'http://A'
Name:
 Url: 'http://B'
Name:
 Language:
 Code: 'en-gb'
 Country: 'gb'

Source: Sergey Melnik

DocID

Name.Language.Code Name.Language.Country

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

Shredded Columns

NESTED DATA: SHREDDING

Store paths in nested structure as
separate columns with additional
meta-data about paths.

Definition Level: How many
optional elements are defined in
the path to an attribute.

Repetition Level: How many
times a structure has been
repeated.

4

message Document {
 required int64 DocId;
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country;
 }
 optional string Url;
 }
}

DocId: 10
Name:
 Language:
 Code: 'en-us'
 Country: 'us'
 Language:
 Code: 'en'
 Url: 'http://A'
Name:
 Url: 'http://B'
Name:
 Language:
 Code: 'en-gb'
 Country: 'gb'

Source: Sergey Melnik

DocID

Name.Language.Code Name.Language.Country

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

Shredded Columns

NESTED DATA: SHREDDING

Store paths in nested structure as
separate columns with additional
meta-data about paths.

Definition Level: How many
optional elements are defined in
the path to an attribute.

Repetition Level: How many
times a structure has been
repeated.

4

message Document {
 required int64 DocId;
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country;
 }
 optional string Url;
 }
}

DocId: 10
Name:
 Language:
 Code: 'en-us'
 Country: 'us'
 Language:
 Code: 'en'
 Url: 'http://A'
Name:
 Url: 'http://B'
Name:
 Language:
 Code: 'en-gb'
 Country: 'gb'

Source: Sergey Melnik

DocID

Name.Language.Code Name.Language.Country

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

Shredded Columns

NESTED DATA: SHREDDING

Store paths in nested structure as
separate columns with additional
meta-data about paths.

Definition Level: How many
optional elements are defined in
the path to an attribute.

Repetition Level: How many
times a structure has been
repeated.

4

message Document {
 required int64 DocId;
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country;
 }
 optional string Url;
 }
}

DocId: 10
Name:
 Language:
 Code: 'en-us'
 Country: 'us'
 Language:
 Code: 'en'
 Url: 'http://A'
Name:
 Url: 'http://B'
Name:
 Language:
 Code: 'en-gb'
 Country: 'gb'

Source: Sergey Melnik

DocID Name.Url

Name.Language.Code Name.Language.Country

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

Shredded Columns

NESTED DATA: SHREDDING

Store paths in nested structure as
separate columns with additional
meta-data about paths.

Definition Level: How many
optional elements are defined in
the path to an attribute.

Repetition Level: How many
times a structure has been
repeated.

4

message Document {
 required int64 DocId;
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country;
 }
 optional string Url;
 }
}

DocId: 10
Name:
 Language:
 Code: 'en-us'
 Country: 'us'
 Language:
 Code: 'en'
 Url: 'http://A'
Name:
 Url: 'http://B'
Name:
 Language:
 Code: 'en-gb'
 Country: 'gb'

Source: Sergey Melnik

DocID Name.Url

Name.Language.Code Name.Language.Country

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

Shredded Columns

NESTED DATA: SHREDDING

Store paths in nested structure as
separate columns with additional
meta-data about paths.

Definition Level: How many
optional elements are defined in
the path to an attribute.

Repetition Level: How many
times a structure has been
repeated.

4

message Document {
 required int64 DocId;
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country;
 }
 optional string Url;
 }
}

DocId: 10
Name:
 Language:
 Code: 'en-us'
 Country: 'us'
 Language:
 Code: 'en'
 Url: 'http://A'
Name:
 Url: 'http://B'
Name:
 Language:
 Code: 'en-gb'
 Country: 'gb'

Source: Sergey Melnik

DocID Name.Url

Name.Language.Code Name.Language.Country

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

Shredded Columns

NESTED DATA: SHREDDING

Store paths in nested structure as
separate columns with additional
meta-data about paths.

Definition Level: How many
optional elements are defined in
the path to an attribute.

Repetition Level: How many
times a structure has been
repeated.

4

message Document {
 required int64 DocId;
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country;
 }
 optional string Url;
 }
}

DocId: 10
Name:
 Language:
 Code: 'en-us'
 Country: 'us'
 Language:
 Code: 'en'
 Url: 'http://A'
Name:
 Url: 'http://B'
Name:
 Language:
 Code: 'en-gb'
 Country: 'gb'

Source: Sergey Melnik

DocID Name.Url

Name.Language.Code Name.Language.Country

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

Shredded Columns

NESTED DATA: SHREDDING

Store paths in nested structure as
separate columns with additional
meta-data about paths.

Definition Level: How many
optional elements are defined in
the path to an attribute.

Repetition Level: How many
times a structure has been
repeated.

4

message Document {
 required int64 DocId;
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country;
 }
 optional string Url;
 }
}

DocId: 10
Name:
 Language:
 Code: 'en-us'
 Country: 'us'
 Language:
 Code: 'en'
 Url: 'http://A'
Name:
 Url: 'http://B'
Name:
 Language:
 Code: 'en-gb'
 Country: 'gb'

Source: Sergey Melnik

DocID Name.Url

Name.Language.Code Name.Language.Country

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

Shredded Columns

NESTED DATA: SHREDDING

Store paths in nested structure as
separate columns with additional
meta-data about paths.

Definition Level: How many
optional elements are defined in
the path to an attribute.

Repetition Level: How many
times a structure has been
repeated.

4

message Document {
 required int64 DocId;
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country;
 }
 optional string Url;
 }
}

DocId: 10
Name:
 Language:
 Code: 'en-us'
 Country: 'us'
 Language:
 Code: 'en'
 Url: 'http://A'
Name:
 Url: 'http://B'
Name:
 Language:
 Code: 'en-gb'
 Country: 'gb'

Source: Sergey Melnik

DocID Name.Url

Name.Language.Code Name.Language.Country

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

Shredded Columns

NESTED DATA: SHREDDING

Store paths in nested structure as
separate columns with additional
meta-data about paths.

Definition Level: How many
optional elements are defined in
the path to an attribute.

Repetition Level: How many
times a structure has been
repeated.

4

message Document {
 required int64 DocId;
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country;
 }
 optional string Url;
 }
}

DocId: 20
Name:
 Url: 'http://C'

Source: Sergey Melnik

DocID Name.Url

Name.Language.Code Name.Language.Country

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

Shredded Columns

NESTED DATA: SHREDDING

Store paths in nested structure as
separate columns with additional
meta-data about paths.

Definition Level: How many
optional elements are defined in
the path to an attribute.

Repetition Level: How many
times a structure has been
repeated.

4

message Document {
 required int64 DocId;
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country;
 }
 optional string Url;
 }
}

DocId: 20
Name:
 Url: 'http://C'

Source: Sergey Melnik

DocID Name.Url

Name.Language.Code Name.Language.Country

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

Shredded Columns

NESTED DATA: SHREDDING

Store paths in nested structure as
separate columns with additional
meta-data about paths.

Definition Level: How many
optional elements are defined in
the path to an attribute.

Repetition Level: How many
times a structure has been
repeated.

4

message Document {
 required int64 DocId;
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country;
 }
 optional string Url;
 }
}

DocId: 20
Name:
 Url: 'http://C'

Source: Sergey Melnik

DocID Name.Url

Name.Language.Code Name.Language.Country

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

NESTED DATA: LENGTH+PRESENCE

Store paths in nested structure as
separate columns but maintain
additional columns to track the
number of entries at each path
level (length) and whether a
key exists at that level for a
record (presence).

5

message Document {
 required int64 DocId;
 repeated group Name {
 repeated group Language {
 required string Code;
 optional string Country;
 }
 optional string Url;
 }
}

DocId: 10
Name:
 Language:
 Code: 'en-us'
 Country: 'us'
 Language:
 Code: 'en'
 Url: 'http://A'
Name:
 Url: 'http://B'
Name:
 Language:
 Code: 'en-gb'
 Country: 'gb'

DocId: 20
Name:
 Url: 'http://C'

Source: Sergey Melnik

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

CRITIQUES OF EXISTING FORMATS

Variable-sized Runs
→ Not SIMD friendly.

Eager Decompression
→ No random access if using block compression.

Dependencies Between Adjacent Values
→ Examples: Delta Encoding, RLE

Vectorization Portability
→ ISAs (versions, vendor) have different SIMD capabilities.

6

Source: Azim Afroozeh

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.cwi.nl/en/people/azim-afroozeh/

15-721 (Spring 2024)

TODAY’S AGENDA

BtrBlocks (TUM)

FastLanes (CWI)

BitWeaving (Wisconsin)

7

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

BTRBLOCKS

PAX-based file format with more aggressive nested
encoding schemes than Parquet / ORC.

Uses a greedy algorithm to select the best encoding
for a column chunk (based on sample) and then
recursively tries to encode outputs of that encoding.
→ No naïve block compression (Snappy, zstd)

Store a file's meta-data separately from the data.

8

BTRBLOCKS: EFFICIENT COLUMNAR
COMPRESSION FOR DATA LAKES
SIGMOD 2023

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://doi.org/10.1145/3589263
https://doi.org/10.1145/3589263

15-721 (Spring 2024)

BTRBLOCKS: ENCODING SCHEMES

RLE / One Value

Frequency Encoding

FOR + Bitpacking

Dictionary Encoding

Pseudodecimals

Fast Static Symbol Table (FSST)

Roaring Bitmaps for NULLs + Exceptions

9

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.vldb.org/pvldb/vol6/p1080-barber.pdf
https://github.com/cwida/fsst
https://roaringbitmap.org/

15-721 (Spring 2024)

BTRBLOCKS: ENCODING SELECTION

Collect a sample from the data and
then try out all viable encoding
schemes. Repeat for three rounds.

Instead of sampling individual values,
BtrBlocks selects multiple small runs
from non-overlapping random
positions.
→ For 64k values, it uses 10 runs of 64 values

(1% sample size).

10

Source: Maximilian Kuschewski

1 1 1 1 1 2 2 2

1

2

5

3

Original Data

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://maxi.fyi/

15-721 (Spring 2024)

BTRBLOCKS: ENCODING SELECTION

Collect a sample from the data and
then try out all viable encoding
schemes. Repeat for three rounds.

Instead of sampling individual values,
BtrBlocks selects multiple small runs
from non-overlapping random
positions.
→ For 64k values, it uses 10 runs of 64 values

(1% sample size).

10

Source: Maximilian Kuschewski

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://maxi.fyi/

15-721 (Spring 2024)

BTRBLOCKS: ENCODING SCHEMES

RLE / One Value

Frequency Encoding

FOR + Bitpacking

Dictionary Encoding

Pseudodecimals

Fast Static Symbol Table (FSST)

Roaring Bitmaps for NULLs + Exceptions

11

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.vldb.org/pvldb/vol6/p1080-barber.pdf
https://github.com/cwida/fsst
https://roaringbitmap.org/

15-721 (Spring 2024)

FSST

String encoding scheme that supports random
access without decompressing previous entries.

Replace frequently occurring substrings (up to 8
bytes) with 1-byte codes.

Uses a "perfect" hash table scheme for fast look-up
of symbols without conditionals / loops.
→ Construct table using evolutionary algorithm that simply

replaces entries if occupied.

12

FSST: FAST RANDOM ACCESS
STRING COMPRESSION
VLDB 2020

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://doi.org/10.14778/3407790.3407851
https://doi.org/10.14778/3407790.3407851

15-721 (Spring 2024)

ROARING BITMAPS

Bitmap index that switches which data structure to
use for a range of values based local density of bits.
→ Dense chunks are stored using uncompressed bitmaps.
→ Sparse chunks use bitpacked arrays of 16-bit integers.

Dense chunks can be further compressed with RLE.

There are many open-source implementations that
are widely used in different DBMSs.

13

BETTER BITMAP PERFORMANCE WITH
ROARING BITMAPS
SOFTWARE: PRACTICE AND EXPERIENCE 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://onlinelibrary.wiley.com/doi/10.1002/spe.2325/abstract
http://onlinelibrary.wiley.com/doi/10.1002/spe.2325/abstract

15-721 (Spring 2024)

ROARING BITMAPS

For each value k, assign it to a
chunk based on k/216.
→ Store k in the chunk's container.

14

Chunk Partitions

0 1 2 3

001
001
110
100
000
000
100
001
000
000

Containers

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

ROARING BITMAPS

For each value k, assign it to a
chunk based on k/216.

If # of values in container is less
than 4096, store as array.
Otherwise, store as Bitmap.

14

Chunk Partitions

0 1 2 3

001
001
110
100
000
000
100
001
000
000

Containers

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

ROARING BITMAPS

For each value k, assign it to a
chunk based on k/216.

If # of values in container is less
than 4096, store as array.
Otherwise, store as Bitmap.

14

Chunk Partitions

0 1 2 3

k=1000

001
001
110
100
000
000
100
001
000
000

Containers

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

ROARING BITMAPS

For each value k, assign it to a
chunk based on k/216.

If # of values in container is less
than 4096, store as array.
Otherwise, store as Bitmap.

14

Chunk Partitions

0 1 2 3

k=1000
1000/216=0

001
001
110
100
000
000
100
001
000
000

Containers

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

ROARING BITMAPS

For each value k, assign it to a
chunk based on k/216.

If # of values in container is less
than 4096, store as array.
Otherwise, store as Bitmap.

14

Chunk Partitions

0 1 2 3

k=1000
1000/216=0
1000%216=1000

001
001
110
100
000
000
100
001
000
000

1000

Containers

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

ROARING BITMAPS

For each value k, assign it to a
chunk based on k/216.

If # of values in container is less
than 4096, store as array.
Otherwise, store as Bitmap.

14

Chunk Partitions

0 1 2 3

k=1000
1000/216=0
1000%216=1000

001
001
110
100
000
000
100
001
000
000

k=199658

1000

Containers

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

ROARING BITMAPS

For each value k, assign it to a
chunk based on k/216.

If # of values in container is less
than 4096, store as array.
Otherwise, store as Bitmap.

14

Chunk Partitions

0 1 2 3

k=1000
1000/216=0
1000%216=1000

001
001
110
100
000
000
100
001
000
000

k=199658
199658/216=3

1000

Containers

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

ROARING BITMAPS

For each value k, assign it to a
chunk based on k/216.

If # of values in container is less
than 4096, store as array.
Otherwise, store as Bitmap.

14

Chunk Partitions

0 1 2 3

k=1000
1000/216=0
1000%216=1000

001
001
110
100
000
000
100
001
000
000

k=199658
199658/216=3
199658%216=50

1000

Containers

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

ROARING BITMAPS

For each value k, assign it to a
chunk based on k/216.

If # of values in container is less
than 4096, store as array.
Otherwise, store as Bitmap.

14

Chunk Partitions

0 1 2 3

k=1000
1000/216=0
1000%216=1000

001
001
110
100
000
000
100
001
000
000

k=199658
199658/216=3
199658%216=50

1000

Set bit #50 to 1

Containers

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OBSERVATION

BtrBlocks + Parquet + ORC generate variable-
length runs of values.
→ This wastes cycles during decoding for both scalar +

vectorized operations.

Parquet + ORC use Delta encoding where each
tuple's value depends on the preceding tuple's value.
→ This is impractical to process with SIMD because you

cannot pass data between lanes in the same register.

15

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

FASTLANES

Suite of encoding schemes that achieve better data
parallelism thorough clever reordering of tuples to
maximize useful work in SIMD operations.

Similar nested encoding as BtrBlocks:
→ Dictionary
→ FOR
→ Delta
→ RLE

To future proof format, they define a "virtual" ISA
with 1024-bit SIMD registers.

16

THE FASTLANES COMPRESSION LAYOUT: DECODING > 100
BILLION INTEGERS PER SECOND WITH SCALAR CODE
VLDB 2023

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://doi.org/10.14778/3598581.3598587
https://doi.org/10.14778/3598581.3598587

15-721 (Spring 2024)

UNIFIED TRANSPOSED LAYOUT

Reorder values in a column in a manner that
improves the DBMS's ability to process them in an
efficient, vectorized manner via SIMD.
→ Relational algebra is based on unordered sets, so users

should not expect data to be ordered.

Algorithms defined in FastLanes' virtual 1024-bit
SIMD ISA that can be emulated on AVX512 or
scalar instructions.

18

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Decoded Index Vector

UNIFIED TRANSPOSED LAYOUT

19

Source: Azim Afroozeh

Original Data

Run-Length Encoding

Delta Encoding

FastLanes RLE

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.cwi.nl/en/people/azim-afroozeh/

15-721 (Spring 2024)

Decoded Index Vector

UNIFIED TRANSPOSED LAYOUT

19

Source: Azim Afroozeh

Original Data

Run-Length Encoding

Delta Encoding

FastLanes RLE

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.cwi.nl/en/people/azim-afroozeh/

15-721 (Spring 2024)

Decoded Index Vector

UNIFIED TRANSPOSED LAYOUT

19

Source: Azim Afroozeh

Original Data

Run-Length Encoding

Delta Encoding

FastLanes RLE

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.cwi.nl/en/people/azim-afroozeh/

15-721 (Spring 2024)

Decoded Index Vector

UNIFIED TRANSPOSED LAYOUT

19

Source: Azim Afroozeh

Original Data

Run-Length Encoding

Delta Encoding

FastLanes RLE

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.cwi.nl/en/people/azim-afroozeh/

15-721 (Spring 2024)

Decoded Index Vector

UNIFIED TRANSPOSED LAYOUT

19

Source: Azim Afroozeh

Original Data

Run-Length Encoding

Delta Encoding

FastLanes RLE

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.cwi.nl/en/people/azim-afroozeh/

15-721 (Spring 2024)

OBSERVATION

The previous encoding schemes scan data by
examining the entire value of each attribute (i.e., all
the bits at the same time).
→ The DBMS cannot "short-circuit" comparisons integer

types because CPU instructions operate on entire words.

20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OBSERVATION

The previous encoding schemes scan data by
examining the entire value of each attribute (i.e., all
the bits at the same time).
→ The DBMS cannot "short-circuit" comparisons integer

types because CPU instructions operate on entire words.

What if a DBMS could scan a subset of each value's
bits and then only check the rest bits if needed?

20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Bit-Slices

BIT-SLICED ENCODING

21

Original Data

id

2

1

4

3

7

6

zipcode

15217

21042

90220

02903

53703

14623

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0null

0

bin(21042)→ 00101001000110010

Source: Jignesh Patel

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://pages.cs.wisc.edu/~jignesh/cs564/notes/lec06-BitbasedIndexing.pdf

15-721 (Spring 2024)

Bit-Slices

BIT-SLICED ENCODING

21

Original Data

id

2

1

4

3

7

6

zipcode

15217

21042

90220

02903

53703

14623

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0null

0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 00

bin(21042)→ 00101001000110010

Source: Jignesh Patel

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://pages.cs.wisc.edu/~jignesh/cs564/notes/lec06-BitbasedIndexing.pdf

15-721 (Spring 2024)

Bit-Slices

BIT-SLICED ENCODING

21

Original Data

id

2

1

4

3

7

6

zipcode

15217

21042

90220

02903

53703

14623

0

0

1

0

0

0

0

0

0

1

0

0

1

0

1

1

0

1

1

0

1

0

0

1

1

1

1

0

1

0

0

0

0

0

0

1

1

0

0

0

1

1

0

1

1

0

0

0

0

1

1

1

1

0

1

1

0

1

0

0

1

1

0

1

0

0

0

1

1

0

0

1

1

1

1

0

1

0

1

1

1

1

0

1

1

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0null

0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 00

0

0

0

0

0

Source: Jignesh Patel

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://pages.cs.wisc.edu/~jignesh/cs564/notes/lec06-BitbasedIndexing.pdf

15-721 (Spring 2024)

Bit-Slices

BIT-SLICED ENCODING

21

Original Data

id

2

1

4

3

7

6

zipcode

15217

21042

90220

02903

53703

14623

0

0

1

0

0

0

0

0

0

1

0

0

1

0

1

1

0

1

1

0

1

0

0

1

1

1

1

0

1

0

0

0

0

0

0

1

1

0

0

0

1

1

0

1

1

0

0

0

0

1

1

1

1

0

1

1

0

1

0

0

1

1

0

1

0

0

0

1

1

0

0

1

1

1

1

0

1

0

1

1

1

1

0

1

1

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0null

0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 00

0

0

0

0

0

SELECT * FROM customer_dim
 WHERE zipcode < 15217

Walk each slice and construct a result bitmap.

Source: Jignesh Patel 0 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0 1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://pages.cs.wisc.edu/~jignesh/cs564/notes/lec06-BitbasedIndexing.pdf

15-721 (Spring 2024)

Bit-Slices

BIT-SLICED ENCODING

21

Original Data

id

2

1

4

3

7

6

zipcode

15217

21042

90220

02903

53703

14623

0

0

1

0

0

0

0

0

0

1

0

0

1

0

1

1

0

1

1

0

1

0

0

1

1

1

1

0

1

0

0

0

0

0

0

1

1

0

0

0

1

1

0

1

1

0

0

0

0

1

1

1

1

0

1

1

0

1

0

0

1

1

0

1

0

0

0

1

1

0

0

1

1

1

1

0

1

0

1

1

1

1

0

1

1

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0null

0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 00

0

0

0

0

0

SELECT * FROM customer_dim
 WHERE zipcode < 15217

Walk each slice and construct a result bitmap.

Skip entries that have 1 in first 3 slices (16, 15, 14)

Source: Jignesh Patel 0 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0 1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://pages.cs.wisc.edu/~jignesh/cs564/notes/lec06-BitbasedIndexing.pdf

15-721 (Spring 2024)

BIT-SLICED ENCODING

Bit-slices can also be used for efficient aggregate
computations.

Example: SUM(attr) using Hamming Weight
→ First, count the number of 1s in slice17 and multiply the

count by 217

→ Then, count the number of 1s in slice16 and multiply the
count by 216

→ Repeat for the rest of slices…

Use the POPCNT instruction to efficiently count the
number of bits set to 1 in a register.

22

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Hamming_weight

15-721 (Spring 2024)

BITWEAVING

Alternative encoding scheme for columnar
databases that supports efficient predicate
evaluation on compressed data using SIMD.
→ Order-preserving dictionary encoding.
→ Bit-level parallelization.
→ Only require common instructions (no scatter/gather)

Implemented in Wisconsin’s QuickStep engine.
→ Became an Apache Incubator project in 2016 but then died

in 2018.

24

BITWEAVING: FAST SCANS FOR MAIN MEMORY
DATA PROCESSING
SIGMOD 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://quickstep.cs.wisc.edu/
http://quickstep.incubator.apache.org/
https://dl.acm.org/doi/10.1145/2463676.2465322
https://dl.acm.org/doi/10.1145/2463676.2465322

15-721 (Spring 2024)

BITWEAVING STORAGE LAYOUTS

Approach #1: Horizontal
→ Row-oriented storage at the bit-level

Approach #2: Vertical
→ Column-oriented storage at the bit-level.
→ Similar to Bit-Slicing but with SIMD support.

25

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

HORIZONTAL STORAGE

26

0 0 1

1 0 1

1 1 0

0 0 1

1 1 0

1 0 0

0 0 0

1 1 1

t0

t1

t2

t3

t4

t5

t6

t7

1 0 0

0 1 1

t8

t9

Se
gm

en
t #

1
Se

gm
en

t #
2

=1

=5

=1

=6

=6

=4

=7

=0

=3

=4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Segment #2

HORIZONTAL STORAGE

26

0 0 1

1 0 1

1 1 0

0 0 1

1 1 0

1 0 0

0 0 0

1 1 1

t0

t1

t2

t3

t4

t5

t6

t7

1 0 0

0 1 1

t8

t9

Se
gm

en
t #

1
Se

gm
en

t #
2

Segment #1

v0 0 0 0 1 0 1 1 0

t0 t4

v1 0 1 0 1 0 1 0 0

t1 t5

v2 0 1 1 0 0 0 0 0

t2 t6

v3 0 0 0 1 0 1 1 1

t3 t7

v4 0 1 0 0 0 0 1 1

t8 t9

Processor Word

Processor Word

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Segment #2

HORIZONTAL STORAGE

26

0 0 1

1 0 1

1 1 0

0 0 1

1 1 0

1 0 0

0 0 0

1 1 1

t0

t1

t2

t3

t4

t5

t6

t7

1 0 0

0 1 1

t8

t9

Se
gm

en
t #

1
Se

gm
en

t #
2

Segment #1

v0 0 0 0 1 0 1 1 0

t0 t4

v1 0 1 0 1 0 1 0 0

t1 t5

v2 0 1 1 0 0 0 0 0

t2 t6

v3 0 0 0 1 0 1 1 1

t3 t7

v4 0 1 0 0 0 0 1 1

t8 t9

Processor Word

Delimiter

Processor Word

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

BITWEAVING/H: EXAMPLE

27

SELECT * FROM table
 WHERE val < 5

t0 t4

0 0 0 1 0 1 1 0X =

Y = 0 1 0 1 0 1 0 1

5 5

mask = 0 1 1 1 0 1 1 1

(Y+(X⊕mask))∧¬mask= 1 0 0 0 0 0 0 0

Source: Jignesh Patel

Selection Vector

1 0 1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://dsg.uwaterloo.ca/seminars/notes/2014-15/Patel-Quickstep.pdf

15-721 (Spring 2024)

BITWEAVING/H: EXAMPLE

27

SELECT * FROM table
 WHERE val < 5

t0 t4

0 0 0 1 0 1 1 0X =

Y = 0 1 0 1 0 1 0 1

5 5

mask = 0 1 1 1 0 1 1 1

(Y+(X⊕mask))∧¬mask= 1 0 0 0 0 0 0 0
1 < 5 5 < 6

Source: Jignesh Patel

1 0 1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://dsg.uwaterloo.ca/seminars/notes/2014-15/Patel-Quickstep.pdf

15-721 (Spring 2024)

BITWEAVING/H: EXAMPLE

Only requires three
instructions to evaluate a
single word.

W

orks on any word size
and encoding length.

Paper contains algorithms
for other operators.

27

SELECT * FROM table
 WHERE val < 5

t0 t4

0 0 0 1 0 1 1 0X =

Y = 0 1 0 1 0 1 0 1

5 5

mask = 0 1 1 1 0 1 1 1

(Y+(X⊕mask))∧¬mask= 1 0 0 0 0 0 0 0
1 < 5 5 < 6

Source: Jignesh Patel

1 0 1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://dsg.uwaterloo.ca/seminars/notes/2014-15/Patel-Quickstep.pdf

15-721 (Spring 2024)

BITWEAVING/H: EXAMPLE

v0 0 0 0 1 0 1 1 0

t0 t4

v1 0 1 0 1 0 1 0 0

t1 t5

v2 0 1 1 0 0 0 0 0

t2 t6

v3 0 0 0 1 0 1 1 1

t3 t7

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0
< 5

< 5

< 5

< 5
1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0
>>3

>>2

>>1

>>0

1 0 0 1 0 1 1 0

t0 t1 t2 t3 t4 t5 t6 t7SELECT * FROM table
 WHERE val < 5

Source: Jignesh Patel

28

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://dsg.uwaterloo.ca/seminars/notes/2014-15/Patel-Quickstep.pdf

15-721 (Spring 2024)

SELECTION VECTOR

SIMD comparison operators produce a bit mask
that specifies which tuples satisfy a predicate.
→ DBMS must convert it into column offsets.

Approach #1: Iteration

Approach #2: Pre-computed Positions Table

tuples = []
for (i=0; i<n; i++) {

if sv[i] == 1
tuples.add(i);

}

1 0 0 1 0 1 1 0

t0 t1 t2 t3 t4 t5 t6 t7

Selection Vector

29

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECTION VECTOR

SIMD comparison operators produce a bit mask
that specifies which tuples satisfy a predicate.
→ DBMS must convert it into column offsets.

Approach #1: Iteration

Approach #2: Pre-computed Positions Table

1 0 0 1 0 1 1 0

t0 t1 t2 t3 t4 t5 t6 t7

Selection Vector

PAYLOADKEY

Positions Table

150

[0,3,5,6]

29

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

VERTICAL STORAGE

30

0 0 1

1 0 1

1 1 0

0 0 1

1 1 0

1 0 0

0 0 0

1 1 1

t0

t1

t2

t3

t4

t5

t6

t7

1 0 0

0 1 1

t8

t9

Se
gm

en
t #

1
Se

gm
en

t #
2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Segment #2

VERTICAL STORAGE

30

0 0 1

1 0 1

1 1 0

0 0 1

1 1 0

1 0 0

0 0 0

1 1 1

t0

t1

t2

t3

t4

t5

t6

t7

1 0 0

0 1 1

t8

t9

Se
gm

en
t #

1
Se

gm
en

t #
2

Segment #1

v0 0 1 1 0 1 1 0 1

t0 t1 t2 t3 t4 t5 t6 t7

v1 0 0 1 0 1 0 0 1

v2 1 1 0 1 0 0 0 1

v3 1 0 0 0 0 0 0 0

t8 t9 - - - - - -

v4 0 1 0 0 0 0 0 0

v5 0 1 0 0 0 0 0 0

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Segment #2

VERTICAL STORAGE

30

0 0 1

1 0 1

1 1 0

0 0 1

1 1 0

1 0 0

0 0 0

1 1 1

t0

t1

t2

t3

t4

t5

t6

t7

1 0 0

0 1 1

t8

t9

Se
gm

en
t #

1
Se

gm
en

t #
2

Segment #1

v0 0 1 1 0 1 1 0 1

t0 t1 t2 t3 t4 t5 t6 t7

v1 0 0 1 0 1 0 0 1

v2 1 1 0 1 0 0 0 1

Processor Word

v3 1 0 0 0 0 0 0 0

t8 t9 - - - - - -

v4 0 1 0 0 0 0 0 0

v5 0 1 0 0 0 0 0 0

Processor Word

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

BITWEAVING/V: EXAMPLE

31

Segment #1

v0 0 1 1 0 1 1 0 1

t0 t1 t2 t3 t4 t5 t6 t7

v1 0 0 1 0 1 0 0 1

v2 1 1 0 1 0 0 0 1

0 1 0

SELECT * FROM table
 WHERE val = 2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

BITWEAVING/V: EXAMPLE

31

Segment #1

v0 0 1 1 0 1 1 0 1

t0 t1 t2 t3 t4 t5 t6 t7

v1 0 0 1 0 1 0 0 1

v2 1 1 0 1 0 0 0 1

0 1 0

0 0 0 0 0 0 0 0

SIMD Compare

SELECT * FROM table
 WHERE val = 2

Mask

1 0 0 1 0 0 1 0

Selection Vector

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

BITWEAVING/V: EXAMPLE

31

Segment #1

v0 0 1 1 0 1 1 0 1

t0 t1 t2 t3 t4 t5 t6 t7

v1 0 0 1 0 1 0 0 1

v2 1 1 0 1 0 0 0 1

0 1 0

SIMD Compare

SELECT * FROM table
 WHERE val = 2

1 0 0 1 0 0 1 0

Selection Vector

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

BITWEAVING/V: EXAMPLE

DBMS can perform early
pruning like Bit-Slicing.

S

kip the last vector because
all bits in previous
comparison are zero.

31

Segment #1

v0 0 1 1 0 1 1 0 1

t0 t1 t2 t3 t4 t5 t6 t7

v1 0 0 1 0 1 0 0 1

v2 1 1 0 1 0 0 0 1

0 1 0

SIMD Compare

1 1 1 1 1 1 1 1

SIMD Compare

SELECT * FROM table
 WHERE val = 2

Mask

1 0 0 1 0 0 1 0

Selection Vector

0 0 0 0 0 0 0 0

Selection Vector

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PARTING THOUGHTS

The last two lectures show why logical-physical data
independence is one of the best parts of the
relational model.
→ There are many strategies for representing data with

unique compute-vs-storage trade-offs.
→ Applications can remain (mostly) oblivious to the low-

details.

Data parallelism via SIMD is going be an important
tool for us the entire semester.

32

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

NEXT CLASS

Project Proposals (5 minutes)
→ The two groups for each project topic will present one

after the other.
→ The liaisons for each project topic should also present the

proposed API separately.

Email me PDF of your slides + proposal
documents before class.

33

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2024/project.html

	Introduction
	Slide 1: Data Formats & Encoding II
	Slide 2: LAST CLASS

	Nested Data
	Slide 3: NESTED DATA
	Slide 4: NESTED DATA: SHREDDING
	Slide 5: NESTED DATA: SHREDDING
	Slide 6: NESTED DATA: SHREDDING
	Slide 7: NESTED DATA: SHREDDING
	Slide 8: NESTED DATA: SHREDDING
	Slide 9: NESTED DATA: SHREDDING
	Slide 10: NESTED DATA: SHREDDING
	Slide 11: NESTED DATA: SHREDDING
	Slide 12: NESTED DATA: SHREDDING
	Slide 13: NESTED DATA: SHREDDING
	Slide 14: NESTED DATA: SHREDDING
	Slide 15: NESTED DATA: SHREDDING
	Slide 16: NESTED DATA: SHREDDING
	Slide 17: NESTED DATA: SHREDDING
	Slide 18: NESTED DATA: LENGTH+PRESENCE
	Slide 19: CRITIQUES OF EXISTING FORMATS
	Slide 20: TODAY’S AGENDA

	BtrBlocks
	Slide 21: BTRBLOCKS
	Slide 22: BTRBLOCKS: ENCODING SCHEMES
	Slide 23: BTRBLOCKS: ENCODING SELECTION
	Slide 24: BTRBLOCKS: ENCODING SELECTION
	Slide 25: BTRBLOCKS: ENCODING SCHEMES

	FSST
	Slide 26: FSST

	Roaring Bitmaps
	Slide 27: ROARING BITMAPS
	Slide 28: ROARING BITMAPS
	Slide 29: ROARING BITMAPS
	Slide 30: ROARING BITMAPS
	Slide 31: ROARING BITMAPS
	Slide 32: ROARING BITMAPS
	Slide 33: ROARING BITMAPS
	Slide 34: ROARING BITMAPS
	Slide 35: ROARING BITMAPS
	Slide 36: ROARING BITMAPS

	FastLanes
	Slide 37: OBSERVATION
	Slide 38: FASTLANES
	Slide 46: UNIFIED TRANSPOSED LAYOUT
	Slide 47: UNIFIED TRANSPOSED LAYOUT
	Slide 48: UNIFIED TRANSPOSED LAYOUT
	Slide 49: UNIFIED TRANSPOSED LAYOUT
	Slide 50: UNIFIED TRANSPOSED LAYOUT
	Slide 51: UNIFIED TRANSPOSED LAYOUT

	Bit Slicing
	Slide 52: OBSERVATION
	Slide 53: OBSERVATION
	Slide 54: BIT-SLICED ENCODING
	Slide 55: BIT-SLICED ENCODING
	Slide 56: BIT-SLICED ENCODING
	Slide 57: BIT-SLICED ENCODING
	Slide 58: BIT-SLICED ENCODING
	Slide 59: BIT-SLICED ENCODING

	Bit Weaving
	Slide 65: BITWEAVING
	Slide 66: BITWEAVING STORAGE LAYOUTS
	Slide 67: HORIZONTAL STORAGE
	Slide 68: HORIZONTAL STORAGE
	Slide 69: HORIZONTAL STORAGE
	Slide 70: BITWEAVING/H: EXAMPLE
	Slide 71: BITWEAVING/H: EXAMPLE
	Slide 72: BITWEAVING/H: EXAMPLE
	Slide 73: BITWEAVING/H: EXAMPLE
	Slide 74: SELECTION VECTOR
	Slide 75: SELECTION VECTOR
	Slide 76: VERTICAL STORAGE
	Slide 77: VERTICAL STORAGE
	Slide 78: VERTICAL STORAGE
	Slide 79: BITWEAVING/V: EXAMPLE
	Slide 80: BITWEAVING/V: EXAMPLE
	Slide 81: BITWEAVING/V: EXAMPLE
	Slide 82: BITWEAVING/V: EXAMPLE

	Conclusion
	Slide 83: PARTING THOUGHTS
	Slide 84: NEXT CLASS

