
ADVANCED
DATABASE

SYSTEMS

Andy Pavlo
CMU 15-721
Spring 202404

Query
Execution &
Processing I

https://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/
https://db.cs.cmu.edu/

15-721 (Spring 2024)

LAST CLASS

Last two lectures were about minimize the amount
of data that the DBMS processes when executing
sequential scans.

We are now going to start discussing ways to
improve the DBMS's query execution performance.

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SEQUENTIAL SCAN OPTIMIZATIONS

Data Encoding / Compression

Prefetching / Scan Sharing

Task Parallelization / Multi-threading

Clustering / Sorting

Late Materialization

Materialized Views / Result Caching

Data Skipping

Data Parallelization / Vectorization

Code Specialization / Compilation

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

EXECUTION OPTIMIZATION

DBMS engineering is an orchestration of a bunch of
optimizations that seek to make full use of
hardware. There is not a single technique that is
more important than others.

Andy's Unscientific Top-3 Optimizations:
→ Data Parallelization (Vectorization)
→ Task Parallelization (Multi-threading)
→ Code Specialization (Pre-Compiled / JIT)

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OPTIMIZATION GOALS

Approach #1: Reduce Instruction Count
→ Use fewer instructions to do the same amount of work.

Approach #2: Reduce Cycles per Instruction
→ Execute more CPU instructions in fewer cycles.

Approach #3: Parallelize Execution
→ Use multiple threads to compute each query in parallel.

5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OPTIMIZATION GOALS

Approach #1: Reduce Instruction Count
→ Use fewer instructions to do the same amount of work.

Approach #2: Reduce Cycles per Instruction
→ Execute more CPU instructions in fewer cycles.

Approach #3: Parallelize Execution
→ Use multiple threads to compute each query in parallel.

5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://lore.kernel.org/lkml/CAHk-=wjuoGyxDhAF8SsrTkN0-YfCx7E6jUN3ikC_tn2AKWTTsA@mail.gmail.com/

15-721 (Spring 2024)

QUERY EXECUTION

A query plan is a DAG of operators.

An operator instance is an
invocation of an operator on a unique
segment of data.

A task is a sequence of one or more
operator instances.

A task set is the collection of
executable tasks for a logical pipeline.

6

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

Pipeline #1

Pipeline #2

A B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TODAY’S AGENDA

MonetDB/X100 Analysis

Processing Models

Plan Processing Direction

Filter Representation

7

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

MONETDB/X100 (2005)

Low-level analysis of execution bottlenecks for in-
memory DBMSs on OLAP workloads.
→ Show how DBMS are designed incorrectly for modern

CPU architectures.

Based on these findings, they proposed a new
DBMS called MonetDB/X100.
→ Renamed to Vectorwise and acquired by Actian in 2010.
→ Rebranded as Vector and Avalanche.

8

MONETDB/X100: HYPER-PIPELINING
QUERY EXECUTION
CIDR 2005

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.informationweek.com/database/ingres-unveils-vectorwise-database-engine/d/d-id/1089785
https://www.actian.com/analytic-database/avalanche/
https://www.cidrdb.org/cidr2005/papers/P19.pdf
https://www.cidrdb.org/cidr2005/papers/P19.pdf

15-721 (Spring 2024)

MONETDB/X100 (2005)

Low-level analysis of execution bottlenecks for in-
memory DBMSs on OLAP workloads.
→ Show how DBMS are designed incorrectly for modern

CPU architectures.

Based on these findings, they proposed a new
DBMS called MonetDB/X100.
→ Renamed to Vectorwise and acquired by Actian in 2010.
→ Rebranded as Vector and Avalanche.

8

MONETDB/X100: HYPER-PIPELINING
QUERY EXECUTION
CIDR 2005

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.informationweek.com/database/ingres-unveils-vectorwise-database-engine/d/d-id/1089785
https://www.actian.com/analytic-database/avalanche/
https://www.cidrdb.org/cidr2005/papers/P19.pdf
https://www.cidrdb.org/cidr2005/papers/P19.pdf
https://twitter.com/peterabcz/status/1747172168411005268

15-721 (Spring 2024)

CPU OVERVIEW

CPUs organize instructions into pipeline stages.

The goal is to keep all parts of the processor busy at
each cycle by masking delays from instructions that
cannot complete in a single cycle.

Super-scalar CPUs support multiple pipelines.
→ Execute multiple instructions in parallel in a single cycle if

they are independent (out-of-order execution).

Everything is fast until there is a mistake…

11

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DBMS / CPU PROBLEMS

Problem #1: Dependencies
→ If one instruction depends on another instruction, then it

cannot be pushed immediately into the same pipeline.

Problem #2: Branch Prediction
→ The CPU tries to predict what branch the program will

take and fill in the pipeline with its instructions.
→ If it gets it wrong, it must throw away any speculative

work and flush the pipeline.

12

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

BRANCH MISPREDICTION

Because of long pipelines, CPUs will speculatively
execute branches. This potentially hides the long
stalls between dependent instructions.

The most executed branching code in a DBMS is
the filter operation during a sequential scan.
But this is (nearly) impossible to predict correctly.

13

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

BRANCH MISPREDICTION

Because of long pipelines, CPUs will speculatively
execute branches. This potentially hides the long
stalls between dependent instructions.

The most executed branching code in a DBMS is
the filter operation during a sequential scan.
But this is (nearly) impossible to predict correctly.

13

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.cppreference.com/w/cpp/language/attributes/likely

15-721 (Spring 2024)

BRANCH MISPREDICTION

Because of long pipelines, CPUs will speculatively
execute branches. This potentially hides the long
stalls between dependent instructions.

The most executed branching code in a DBMS is
the filter operation during a sequential scan.
But this is (nearly) impossible to predict correctly.

13

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.cppreference.com/w/cpp/language/attributes/likely
https://blog.aaronballman.com/2020/08/dont-use-the-likely-or-unlikely-attributes/

15-721 (Spring 2024)

BRANCH MISPREDICTION

Because of long pipelines, CPUs will speculatively
execute branches. This potentially hides the long
stalls between dependent instructions.

The most executed branching code in a DBMS is
the filter operation during a sequential scan.
But this is (nearly) impossible to predict correctly.

13

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT * FROM table
 WHERE key > $(low)
 AND key < $(high)

SELECTION SCANS

17

Source: Bogdan Raducanu

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2024)

SELECTION SCANS

17

Scalar (Branching)

i = 0
for t in table:
 key = t.key
 if (key>low) && (key<high):
 copy(t, output[i])
 i = i + 1

Scalar (Branchless)

i = 0
for t in table:
 copy(t, output[i])
 key = t.key
 delta = (key>low ? 1 : 0) &
 ⮱(key<high ? 1 : 0)
 i = i + delta

Source: Bogdan Raducanu

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2024)

SELECTION SCANS

19

Source: Bogdan Raducanu

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2024)

EXCESSIVE INSTRUCTIONS

The DBMS needs to support different data types, so
it must check a values type before it performs any
operation on that value.
→ This is usually implemented as giant switch statements.
→ Also creates more branches that can be difficult for the

CPU to predict reliably.

Example: Postgres' addition for NUMERIC types.

20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

EXCESSIVE INSTRUCTIONS

The DBMS needs to support different data types, so
it must check a values type before it performs any
operation on that value.
→ This is usually implemented as giant switch statements.
→ Also creates more branches that can be difficult for the

CPU to predict reliably.

Example: Postgres' addition for NUMERIC types.

20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://doxygen.postgresql.org/interfaces_2ecpg_2pgtypeslib_2numeric_8c_source.html#l00722

15-721 (Spring 2024)

PROCESSING MODEL

A DBMS's processing model defines how the
system executes a query plan and moves data from
one operator to the next.
→ Different trade-offs for workloads (OLTP vs. OLAP).

Each processing model is comprised of two types of
execution paths:
→ Control Flow: How the DBMS invokes an operator.
→ Data Flow: How an operator sends its results.

The output of an operator can be either whole
tuples (NSM) or subsets of columns (DSM).

22

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PROCESSING MODEL

Approach #1: Iterator Model

Approach #2: Materialization Model

Approach #3: Vectorized / Batch Model

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

ITERATOR MODEL

Each query plan operator implements a Next()
function.
→ On each invocation, the operator returns either a single

tuple or a EOF marker if there are no more tuples.
→ The operator implements a loop that calls next on its

children to retrieve their tuples and then process them.

Each operator implementation also has Open() and
Close() functions.
→ Analogous to constructors/destructors, but for operators.

Also called Volcano or Pipeline Model.

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

ITERATOR MODEL

25

for t in R:
 emit(t)

for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): emit(t1⨝t2)

for t in child.Next():
 emit(projection(t))

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

Next()

Next()

Next() Next()

Next()

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

ITERATOR MODEL

25

for t in R:
 emit(t)

for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): emit(t1⨝t2)

for t in child.Next():
 emit(projection(t))

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

1

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

ITERATOR MODEL

25

for t in R:
 emit(t)

for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): emit(t1⨝t2)

for t in child.Next():
 emit(projection(t))

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

1

2

3

Single Tuple

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

ITERATOR MODEL

25

for t in R:
 emit(t)

for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): emit(t1⨝t2)

for t in child.Next():
 emit(projection(t))

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

1

2

3 5

4

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

ITERATOR MODEL

25

for t in R:
 emit(t)

for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): emit(t1⨝t2)

for t in child.Next():
 emit(projection(t))

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

1

2

3 5

4

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

ITERATOR MODEL

25

for t in R:
 emit(t)

for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): emit(t1⨝t2)

for t in child.Next():
 emit(projection(t))

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

1

2

3 5

4

Control Flow
Data Flow

Pipeline #1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

ITERATOR MODEL

25

for t in R:
 emit(t)

for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): emit(t1⨝t2)

for t in child.Next():
 emit(projection(t))

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

1

2

3 5

4

Control Flow
Data Flow

Pipeline #1

Pipeline #2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

ITERATOR MODEL

The Iterator model is used in almost every DBMS.
→ Easy to implement / debug.
→ Output control works easily with this approach.

Allows for pipelining where the DBMS tries to
process each tuple through as many operators as
possible before retrieivng the next tuple.

A pipeline breaker is an operator that cannot
finish until all its children emit all their tuples.
→ Joins (Build Side), Subqueries, Order By

32

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

MATERIALIZATION MODEL

Each operator processes its input all at once and
then emits its output all at once.
→ The operator "materializes" its output as a single result.
→ The DBMS can push down hints (e.g., LIMIT) to avoid

scanning too many tuples.
→ Can send either a materialized row or a single column.

Originally developed in MonetDB in the 1990s to
process entire columns at a time instead of single
tuples.

33

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

MATERIALIZATION MODEL

34

out = []
for t in R:
 out.add(t)
return out

out = []
for t1 in left.Output():
 buildHashTable(t1)
for t2 in right.Output():
 if probe(t2): out.add(t1⨝t2)
return out

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

1
SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

MATERIALIZATION MODEL

34

out = []
for t in R:
 out.add(t)
return out

out = []
for t1 in left.Output():
 buildHashTable(t1)
for t2 in right.Output():
 if probe(t2): out.add(t1⨝t2)
return out

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

1

2

3

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

MATERIALIZATION MODEL

34

out = []
for t in R:
 out.add(t)
return out

out = []
for t1 in left.Output():
 buildHashTable(t1)
for t2 in right.Output():
 if probe(t2): out.add(t1⨝t2)
return out

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

1

2

3

All Tuples

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

MATERIALIZATION MODEL

34

out = []
for t in R:
 out.add(t)
return out

out = []
for t1 in left.Output():
 buildHashTable(t1)
for t2 in right.Output():
 if probe(t2): out.add(t1⨝t2)
return out

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

1

2

3 5

4

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

MATERIALIZATION MODEL

34

out = []
for t in R:
 out.add(t)
return out

out = []
for t1 in left.Output():
 buildHashTable(t1)
for t2 in right.Output():
 if probe(t2): out.add(t1⨝t2)
return out

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

1

2

3 5

4

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

MATERIALIZATION MODEL

34

out = []
for t in R:
 out.add(t)
return out

out = []
for t1 in left.Output():
 buildHashTable(t1)
for t2 in right.Output():
 if probe(t2): out.add(t1⨝t2)
return out

out = []
for t in child.Output():
 out.add(projection(t))
return out

1

2

3

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p
out = []
for t in S:
 if evalPred(t): out.add(t)
return out

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

MATERIALIZATION MODEL

Better for OLTP workloads because queries only
access a small number of tuples at a time.
→ Lower execution / coordination overhead.
→ Fewer function calls.

Not good for OLAP queries with large intermediate
results.

40

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

VECTORIZATION MODEL

Like the Iterator Model where each operator
implements a Next() function, but…

Each operator emits a batch of tuples instead of a
single tuple.
→ The operator's internal loop processes multiple tuples at a

time.
→ The size of the batch can vary based on hardware or query

properties.
→ Each batch will contain one or more columns each their

own null bitmaps.

41

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

VECTORIZATION MODEL

42

out = []
for t in R:
 out.add(t)
 if |out|>n: emit(out)

out = []
for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): out.add(t1⨝t2)
 if |out|>n: emit(out)

out = []
for t in child.Next():
 out.add(projection(t))
 if |out|>n: emit(out)

out = []
for t in child.Next():
 if evalPred(t): out.add(t)
 if |out|>n: emit(out)

1

2

3
out = []
for t in S:
 out.add(t)
 if |out|>n: emit(out)

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

VECTORIZATION MODEL

42

out = []
for t in R:
 out.add(t)
 if |out|>n: emit(out)

out = []
for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): out.add(t1⨝t2)
 if |out|>n: emit(out)

out = []
for t in child.Next():
 out.add(projection(t))
 if |out|>n: emit(out)

out = []
for t in child.Next():
 if evalPred(t): out.add(t)
 if |out|>n: emit(out)

1

2

3
out = []
for t in S:
 out.add(t)
 if |out|>n: emit(out)

Tuple Batch

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

VECTORIZATION MODEL

42

out = []
for t in R:
 out.add(t)
 if |out|>n: emit(out)

out = []
for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): out.add(t1⨝t2)
 if |out|>n: emit(out)

out = []
for t in child.Next():
 out.add(projection(t))
 if |out|>n: emit(out)

out = []
for t in child.Next():
 if evalPred(t): out.add(t)
 if |out|>n: emit(out)

1

2

3
out = []
for t in S:
 out.add(t)
 if |out|>n: emit(out)

5

4

Tuple Batch

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

VECTORIZATION MODEL

42

out = []
for t in R:
 out.add(t)
 if |out|>n: emit(out)

out = []
for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): out.add(t1⨝t2)
 if |out|>n: emit(out)

out = []
for t in child.Next():
 out.add(projection(t))
 if |out|>n: emit(out)

out = []
for t in child.Next():
 if evalPred(t): out.add(t)
 if |out|>n: emit(out)

1

2

3
out = []
for t in S:
 out.add(t)
 if |out|>n: emit(out)

5

4

Tuple Batch

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

VECTORIZATION MODEL

Ideal for OLAP queries because it greatly reduces
the number of invocations per operator.

Allows an out-of-order CPU to efficiently execute
operators over batches of tuples.
→ Operators perform work in tight for-loops over arrays,

which compilers know how to optimize / vectorize.
→ No data or control dependencies.
→ Hot instruction cache.

46

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

VECTORIZATION MODEL

Ideal for OLAP queries because it greatly reduces
the number of invocations per operator.

Allows an out-of-order CPU to efficiently execute
operators over batches of tuples.
→ Operators perform work in tight for-loops over arrays,

which compilers know how to optimize / vectorize.
→ No data or control dependencies.
→ Hot instruction cache.

46

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://bit.ly/cidr2024-test-of-time

15-721 (Spring 2024)

OBSERVATION

In the previous examples, the DBMS starts
executing a query by invoking Next() at the root of
the query plan and pulling data up from leaf
operators.

This is the how most DBMSs implement their
execution engine.

48

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)
→ Start with the root and "pull" data up from its children.
→ Tuples are always passed between operators using function

calls (unless it's a pipeline breaker).

Approach #2: Bottom-to-Top (Push)
→ Start with leaf nodes and "push" data to their parents.
→ Can "fuse" operators together within a for-loop to

minimize intermediate result staging.
→ We will see this technique again later in HyPer and

Peloton ROF.

49

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2019/papers/19-compilation/p539-neumann.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/21-vectorization2/menon-vldb2017.pdf

15-721 (Spring 2024)

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

PUSH-BASED ITERATOR MODEL

50

Pipeline #1

Pipeline #2

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

PUSH-BASED ITERATOR MODEL

50

for t2 in S:
 if evalPred(t):
 if probeHashTable(t2):
 emit(projection(t1⨝t2))

2

for t1 in R:
 buildHashTable(t1)

1

Pipeline #1

Pipeline #2

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

PUSH-BASED ITERATOR MODEL

50

for t2 in S:
 if evalPred(t):
 if probeHashTable(t2):
 emit(projection(t1⨝t2))

2

for t1 in R:
 buildHashTable(t1)

1

Pipeline #1

Pipeline #2

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

Control Flow
Data Flow

Scheduler

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

PUSH-BASED ITERATOR MODEL

50

for t2 in S:
 if evalPred(t):
 if probeHashTable(t2):
 emit(projection(t1⨝t2))

2

for t1 in R:
 buildHashTable(t1)

1

Pipeline #1

Pipeline #2

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

Control Flow
Data Flow

Scheduler

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)
→ Easy to control output via LIMIT.
→ Parent operator blocks until its child returns with a tuple.
→ Additional overhead because operators' Next() functions

are implemented as virtual functions.
→ Branching costs on each Next() invocation.

Approach #2: Bottom-to-Top (Push)
→ Allows for tighter control of caches/registers in pipelines.
→ May not have exact control of intermediate result sizes.
→ Difficult to implement some operators (Sort-Merge Join).

54

PUSH VS. PULL-BASED LOOP FUSION IN
QUERY ENGINES
ARXIV 2016

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://arxiv.org/abs/1610.09166
https://arxiv.org/abs/1610.09166

15-721 (Spring 2024)

OBSERVATION

With the Iterator model, if a tuple does not satisfy
a filter, then the DBMS just invokes Next() again
on the child operator to get another tuple.

In the Vectorized model, however, a vector / batch
may contain some tuples that do not satisfy filters.

55

SELECT * FROM xxx
 WHERE col0 IS NULL
 OR col1 LIKE 'b%';

col0: int32

55
66
77
-

data

88

0
0
0
1

null?

0

col1: varchar

aa
bb
-
cc

data

bbb

0
0
1
0

null?

0

col0: int32

66
-
88

data
0
1
0

null?

col1: varchar

bb
cc
bbb

data
0
0
0

null?

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

FILTER REPRESENTATION

Approach #1: Selection Vectors
→ Dense sorted list of tuple identifiers that

indicate which tuples in a batch are valid.
→ Pre-allocate selection vector as the max-

size of the input vector.

Approach #2: Bitmaps
→ Positionally-aligned bitmap that indicates

whether a tuple is valid at an offset.
→ Some SIMD instructions natively use

these bitmaps as input masks.

56

FILTER REPRESENTATION IN VECTORIZED
QUERY EXECUTION
DAMON 2021

WHERE col0 IS NULL OR col1 LIKE 'b%'

Selection Vector

1
3

offset

4

col0: int32

55
66
77
-

data

88

0
0
0
1

null?

0

col1: varchar

aa
bb
-
cc

data

bbb

0
0
1
0

null?

0

Bitmapcol0: int32

55
66
77
-

data

88

0
0
0
1

null?

0

col1: varchar

aa
bb
-
cc

data

bbb

0
0
1
0

null?

0

0
1
1
0

active

1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://doi.org/10.1145/3465998.3466009
https://doi.org/10.1145/3465998.3466009

15-721 (Spring 2024)

PARTING THOUGHTS

The easiest way to implement something is not
going to always produce the most efficient
execution strategy for modern CPUs.

Vectorized / bottom-up execution almost always
will be the better way to execute OLAP queries.

57

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

NEXT CLASS

Design of an Execution Engine

More Parallel Execution

58

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

	Introduction
	Slide 1: Query Execution & Processing I
	Slide 2: LAST CLASS
	Slide 3: SEQUENTIAL SCAN OPTIMIZATIONS
	Slide 4: EXECUTION OPTIMIZATION
	Slide 5: OPTIMIZATION GOALS
	Slide 6: OPTIMIZATION GOALS
	Slide 7: QUERY EXECUTION
	Slide 8: TODAY’S AGENDA

	MonetDB/X100
	Slide 9: MONETDB/X100 (2005)
	Slide 10: MONETDB/X100 (2005)
	Slide 11: CPU OVERVIEW
	Slide 12: DBMS / CPU PROBLEMS
	Slide 13: BRANCH MISPREDICTION
	Slide 14: BRANCH MISPREDICTION
	Slide 15: BRANCH MISPREDICTION
	Slide 16: BRANCH MISPREDICTION
	Slide 17: SELECTION SCANS
	Slide 18: SELECTION SCANS
	Slide 19: SELECTION SCANS
	Slide 20: EXCESSIVE INSTRUCTIONS
	Slide 21: EXCESSIVE INSTRUCTIONS

	Processing Models
	Slide 22: PROCESSING MODEL
	Slide 23: PROCESSING MODEL
	Slide 24: ITERATOR MODEL
	Slide 25: ITERATOR MODEL
	Slide 26: ITERATOR MODEL
	Slide 27: ITERATOR MODEL
	Slide 28: ITERATOR MODEL
	Slide 29: ITERATOR MODEL
	Slide 30: ITERATOR MODEL
	Slide 31: ITERATOR MODEL
	Slide 32: ITERATOR MODEL
	Slide 33: MATERIALIZATION MODEL
	Slide 34: MATERIALIZATION MODEL
	Slide 35: MATERIALIZATION MODEL
	Slide 36: MATERIALIZATION MODEL
	Slide 37: MATERIALIZATION MODEL
	Slide 38: MATERIALIZATION MODEL
	Slide 39: MATERIALIZATION MODEL
	Slide 40: MATERIALIZATION MODEL
	Slide 41: VECTORIZATION MODEL
	Slide 42: VECTORIZATION MODEL
	Slide 43: VECTORIZATION MODEL
	Slide 44: VECTORIZATION MODEL
	Slide 45: VECTORIZATION MODEL
	Slide 46: VECTORIZATION MODEL
	Slide 47: VECTORIZATION MODEL

	Push vs Pull
	Slide 48: OBSERVATION
	Slide 49: PLAN PROCESSING DIRECTION
	Slide 50: PUSH-BASED ITERATOR MODEL
	Slide 51: PUSH-BASED ITERATOR MODEL
	Slide 52: PUSH-BASED ITERATOR MODEL
	Slide 53: PUSH-BASED ITERATOR MODEL
	Slide 54: PLAN PROCESSING DIRECTION

	Filter Representation
	Slide 55: OBSERVATION
	Slide 56: FILTER REPRESENTATION

	Conclusion
	Slide 57: PARTING THOUGHTS
	Slide 58: NEXT CLASS

