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LAST CLASS

Last two lectures were about minimize the amount 
of data that the DBMS processes when executing 
sequential scans.

We are now going to start discussing ways to 
improve the DBMS's query execution performance.
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SEQUENTIAL SCAN OPTIMIZATIONS

Data Encoding / Compression

Prefetching / Scan Sharing

Task Parallelization / Multi-threading

Clustering / Sorting

Late Materialization

Materialized Views / Result Caching

Data Skipping

Data Parallelization / Vectorization

Code Specialization / Compilation
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EXECUTION OPTIMIZATION

DBMS engineering is an orchestration of a bunch of 
optimizations that seek to make full use of 
hardware. There is not a single technique that is 
more important than others.

Andy's Unscientific Top-3 Optimizations:
→ Data Parallelization (Vectorization)
→ Task Parallelization (Multi-threading)
→ Code Specialization (Pre-Compiled / JIT)
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OPTIMIZATION GOALS

Approach #1: Reduce Instruction Count
→ Use fewer instructions to do the same amount of work.

Approach #2: Reduce Cycles per Instruction
→ Execute more CPU instructions in fewer cycles.

Approach #3: Parallelize Execution
→ Use multiple threads to compute each query in parallel.
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QUERY EXECUTION

A query plan is a DAG of operators.

An operator instance is an 
invocation of an operator on a unique 
segment of data.

A task is a sequence of one or more 
operator instances.

A task set is the collection of 
executable tasks for a logical pipeline.
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SELECT A.id, B.value
  FROM A JOIN B
    ON A.id = B.id
 WHERE A.value < 99
   AND B.value > 100
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TODAY’S AGENDA

MonetDB/X100 Analysis

Processing Models

Plan Processing Direction

Filter Representation
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MONETDB/X100 (2005)

Low-level analysis of execution bottlenecks for in-
memory DBMSs on OLAP workloads.
→ Show how DBMS are designed incorrectly for modern 

CPU architectures.

Based on these findings, they proposed a new 
DBMS called MonetDB/X100.
→ Renamed to Vectorwise and acquired by Actian in 2010.
→ Rebranded as Vector and Avalanche.
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CPU OVERVIEW

CPUs organize instructions into pipeline stages.

The goal is to keep all parts of the processor busy at 
each cycle by masking delays from instructions that 
cannot complete in a single cycle.

Super-scalar CPUs support multiple pipelines.
→ Execute multiple instructions in parallel in a single cycle if 

they are independent (out-of-order execution).

Everything is fast until there is a mistake…
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DBMS / CPU PROBLEMS

Problem #1: Dependencies
→ If one instruction depends on another instruction, then it 

cannot be pushed immediately into the same pipeline.

Problem #2: Branch Prediction
→ The CPU tries to predict what branch the program will 

take and fill in the pipeline with its instructions.
→ If it gets it wrong, it must throw away any speculative 

work and flush the pipeline.

12

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

BRANCH MISPREDICTION

Because of long pipelines, CPUs will speculatively 
execute branches. This potentially hides the long 
stalls between dependent instructions.

The most executed branching code in a DBMS is 
the filter operation during a sequential scan.
But this is (nearly) impossible to predict correctly.
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SELECT * FROM table
 WHERE key > $(low)
   AND key < $(high)

SELECTION SCANS
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SELECTION SCANS

17

Scalar (Branching)

i = 0
for t in table:
  key = t.key
  if (key>low) && (key<high):
    copy(t, output[i])
    i = i + 1

Scalar (Branchless)

i = 0
for t in table:
  copy(t, output[i])
  key = t.key
  delta = (key>low ? 1 : 0) &
      ⮱(key<high ? 1 : 0)
  i = i + delta

Source: Bogdan Raducanu
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SELECTION SCANS
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EXCESSIVE INSTRUCTIONS

The DBMS needs to support different data types, so 
it must check a values type before it performs any 
operation on that value.
→ This is usually implemented as giant switch statements.
→ Also creates more branches that can be difficult for the 

CPU to predict reliably.

Example: Postgres' addition for NUMERIC types.

20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

EXCESSIVE INSTRUCTIONS

The DBMS needs to support different data types, so 
it must check a values type before it performs any 
operation on that value.
→ This is usually implemented as giant switch statements.
→ Also creates more branches that can be difficult for the 

CPU to predict reliably.

Example: Postgres' addition for NUMERIC types.

20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://doxygen.postgresql.org/interfaces_2ecpg_2pgtypeslib_2numeric_8c_source.html#l00722


15-721 (Spring 2024)

PROCESSING MODEL

A DBMS's processing model defines how the 
system executes a query plan and moves data from 
one operator to the next.
→ Different trade-offs for workloads (OLTP vs. OLAP).

Each processing model is comprised of two types of 
execution paths:
→ Control Flow: How the DBMS invokes an operator.
→ Data Flow: How an operator sends its results.

The output of an operator can be either whole 
tuples (NSM) or subsets of columns (DSM).
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PROCESSING MODEL

Approach #1: Iterator Model

Approach #2: Materialization Model

Approach #3: Vectorized / Batch Model
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ITERATOR MODEL

Each query plan operator implements a Next()
function.
→ On each invocation, the operator returns either a single 

tuple or a EOF marker if there are no more tuples.
→ The operator implements a loop that calls next on its 

children to retrieve their tuples and then process them.

Each operator implementation also has Open() and 
Close() functions.
→ Analogous to constructors/destructors, but for operators.

Also called Volcano or Pipeline Model.
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R S

R.id=S.id

value>100

R.id, S.cdate
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SELECT R.id, S.cdate
  FROM R JOIN S
    ON R.id = S.id
 WHERE S.value > 100

ITERATOR MODEL

25

for t in R:
  emit(t)

for t1 in left.Next():
  buildHashTable(t1)
for t2 in right.Next():
  if probe(t2): emit(t1⨝t2)

for t in child.Next():
  emit(projection(t))

for t in child.Next():
  if evalPred(t): emit(t)

for t in S:
  emit(t)

Next()

Next()

Next() Next()

Next()

Control Flow
Data Flow
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ITERATOR MODEL

The Iterator model is used in almost every DBMS. 
→ Easy to implement / debug.
→ Output control works easily with this approach.

Allows for pipelining where the DBMS tries to 
process each tuple through as many operators as 
possible before retrieivng the next tuple.

A pipeline breaker is an operator that cannot 
finish until all its children emit all their tuples.
→ Joins (Build Side), Subqueries, Order By

32
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MATERIALIZATION MODEL

Each operator processes its input all at once and 
then emits its output all at once.
→ The operator "materializes" its output as a single result.
→ The DBMS can push down hints (e.g., LIMIT) to avoid 

scanning too many tuples.
→ Can send either a materialized row or a single column.

Originally developed in MonetDB in the 1990s to 
process entire columns at a time instead of single 
tuples.
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MATERIALIZATION MODEL

34

out = [ ]
for t in R:
  out.add(t)
return out

out = [ ]
for t1 in left.Output():
  buildHashTable(t1)
for t2 in right.Output():
  if probe(t2): out.add(t1⨝t2)
return out

out = [ ]
for t in child.Output():
  out.add(projection(t))
return out

out = [ ]
for t in child.Output():
  if evalPred(t): out.add(t)
return out

out = [ ]
for t in S:
  out.add(t)
return out

1
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for t in S:
  if evalPred(t): out.add(t)
return out
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MATERIALIZATION MODEL

Better for OLTP workloads because queries only 
access a small number of tuples at a time.
→ Lower execution / coordination overhead.
→ Fewer function calls.

Not good for OLAP queries with large intermediate 
results.

40
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VECTORIZATION MODEL

Like the Iterator Model where each operator 
implements a Next() function, but…

Each operator emits a batch of tuples instead of a 
single tuple.
→ The operator's internal loop processes multiple tuples at a 

time.
→ The size of the batch can vary based on hardware or query 

properties.
→ Each batch will contain one or more columns each their 

own null bitmaps.

41
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VECTORIZATION MODEL

42

out = [ ]
for t in R:
  out.add(t)
  if |out|>n: emit(out)

out = [ ]
for t1 in left.Next():
  buildHashTable(t1)
for t2 in right.Next():
  if probe(t2): out.add(t1⨝t2)
  if |out|>n: emit(out)

out = [ ]
for t in child.Next():
  out.add(projection(t))
  if |out|>n: emit(out)

out = [ ]
for t in child.Next():
  if evalPred(t): out.add(t)
  if |out|>n: emit(out)
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3
out = [ ]
for t in S:
  out.add(t)
  if |out|>n: emit(out)
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VECTORIZATION MODEL
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VECTORIZATION MODEL
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VECTORIZATION MODEL
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VECTORIZATION MODEL

Ideal for OLAP queries because it greatly reduces 
the number of invocations per operator.

Allows an out-of-order CPU to efficiently execute 
operators over batches of tuples.
→ Operators perform work in tight for-loops over arrays, 

which compilers know how to optimize / vectorize.
→ No data or control dependencies.
→ Hot instruction cache.

46
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the number of invocations per operator.

Allows an out-of-order CPU to efficiently execute 
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→ No data or control dependencies.
→ Hot instruction cache.
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OBSERVATION

In the previous examples, the DBMS starts 
executing a query by invoking Next() at the root of 
the query plan and pulling data up from leaf 
operators.

This is the how most DBMSs implement their 
execution engine.
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PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)
→ Start with the root and "pull" data up from its children.
→ Tuples are always passed between operators using function 

calls (unless it's a pipeline breaker).

Approach #2: Bottom-to-Top (Push)
→ Start with leaf nodes and "push" data to their parents.
→ Can "fuse" operators together within a for-loop to 

minimize intermediate result staging.
→ We will see this technique again later in HyPer and 

Peloton ROF.

49

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2019/papers/19-compilation/p539-neumann.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/21-vectorization2/menon-vldb2017.pdf


15-721 (Spring 2024)
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  FROM R JOIN S
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PUSH-BASED ITERATOR MODEL
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PUSH-BASED ITERATOR MODEL
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 WHERE S.value > 100
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PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)
→ Easy to control output via LIMIT.
→ Parent operator blocks until its child returns with a tuple.
→ Additional overhead because operators' Next() functions 

are implemented as virtual functions.
→ Branching costs on each Next() invocation.

Approach #2: Bottom-to-Top (Push)
→ Allows for tighter control of caches/registers in pipelines.
→ May not have exact control of intermediate result sizes.
→ Difficult to implement some operators (Sort-Merge Join).
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PUSH VS. PULL-BASED LOOP FUSION IN 
QUERY ENGINES
ARXIV 2016
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OBSERVATION

With the Iterator model, if a tuple does not satisfy 
a filter, then the DBMS just invokes Next() again 
on the child operator to get another tuple.

In the Vectorized model, however, a vector / batch 
may contain some tuples that do not satisfy filters.
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SELECT * FROM xxx
 WHERE col0 IS NULL
    OR col1 LIKE 'b%';

col0: int32

55
66
77
-

data

88

0
0
0
1

null?

0

col1: varchar

aa
bb
-
cc

data

bbb

0
0
1
0

null?

0

col0: int32

66
-
88

data
0
1
0

null?

col1: varchar

bb
cc
bbb

data
0
0
0

null?
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FILTER REPRESENTATION

Approach #1: Selection Vectors
→ Dense sorted list of tuple identifiers that 

indicate which tuples in a batch are valid.
→ Pre-allocate selection vector as the max-

size of the input vector.

Approach #2: Bitmaps
→ Positionally-aligned bitmap that indicates 

whether a tuple is valid at an offset.
→ Some SIMD instructions natively use 

these bitmaps as input masks.

56

FILTER REPRESENTATION IN VECTORIZED 
QUERY EXECUTION
DAMON 2021

WHERE col0 IS NULL OR col1 LIKE 'b%'

Selection Vector

1
3

offset

4

col0: int32

55
66
77
-

data

88

0
0
0
1

null?

0

col1: varchar

aa
bb
-
cc

data

bbb

0
0
1
0

null?

0

Bitmapcol0: int32

55
66
77
-

data

88

0
0
0
1

null?

0

col1: varchar

aa
bb
-
cc

data

bbb

0
0
1
0

null?

0

0
1
1
0

active

1
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PARTING THOUGHTS

The easiest way to implement something is not 
going to always produce the most efficient 
execution strategy for modern CPUs.

Vectorized / bottom-up execution almost always 
will be the better way to execute OLAP queries.
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NEXT CLASS

Design of an Execution Engine

More Parallel Execution

58
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