
ADVANCED
DATABASE

SYSTEMS

Andy Pavlo
CMU 15-721
Spring 202405

Query
Execution &
Processing II

https://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/
https://db.cs.cmu.edu/

15-721 (Spring 2024)

LAST CLASS

Query Processing Models

Plan Processing Direction

Filter Representation

Vectorized + Push-based query processing model
is the superior approach for OLAP workloads.

A Push-based model with centralized scheduling
enables fine-grained control of execution.
→ Pausing due to backpressure + blocking I/O

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TODAY’S AGENDA

Parallel Execution

Operator Output

Intermediate Data Representation

Expression Evaluation

Adaptive Execution

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PARALLEL EXECUTION

The DBMS executes multiple tasks simultaneously
to improve hardware utilization.
→ Active tasks do not need to belong to the same query.
→ High-level approaches do not vary on whether the DBMS

is multi-threaded, multi-process, or multi-node.

Approach #1: Inter-Query Parallelism

Approach #2: Intra-Query Parallelism

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple
queries to execute simultaneously.
→ Most DBMSs use a simple first-come, first-served policy.

OLAP queries have parallelizable and non-
parallelizable phases. The goal is to always keep all
cores active.

We will discuss scheduling queries and multiplexing
tasks on cores in future lectures.

5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

INTRA-QUERY PARALLELISM

Improve the performance of a single query by
executing its operators in parallel.

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

These techniques are not mutually exclusive.

There are parallel algorithms for every relational
operator.

6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)
→ Operators are decomposed into independent instances that

perform the same function on different subsets of data.

The DBMS inserts an exchange operator into the
query plan to coalesce results from children
operators.

7

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

8

A B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

8

A2A1 A3
1 2 3

A B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

8

A2A1 A3
1 2 3

A B

⨝
s

p

s
s s s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

8

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s
p p p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

8

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s
p p p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

8

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

⨝

p p p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

8

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

⨝

p p p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

8

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

⨝

p p p p p p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

8

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

Probe HT Probe HT Probe HT

⨝

p p p p p p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

8

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

Probe HT Probe HT Probe HT

⨝

p p p p p p

Exchange

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

8

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

Probe HT Probe HT Probe HT

⨝

p p p p p p

Exchange

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

EXCHANGE OPERATOR

Source: Craig Freedman

Gather

Operator Operator Operator

Repartition

Operator Operator Operator

Operator Operator

Operator Operator Operator

Distribute

9

Exchange Type #1 – Gather
→ Combine the results from multiple workers

into a single output stream.

Exchange Type #2 – Distribute
→ Split a single input stream into multiple

output streams.

Exchange Type #3 – Repartition
→ Shuffle multiple input streams across multiple

output streams.
→ Some DBMSs always perform this step after

every pipeline (e.g., Dremel/BigQuery).

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://blogs.msdn.microsoft.com/craigfr/2006/10/25/the-parallelism-operator-aka-exchange/

15-721 (Spring 2024)

INTER-OPERATOR PARALLELISM

Approach #2: Inter-Operator (Vertical)
→ Operations are overlapped to pipeline data from one stage

to the next without materialization.
→ Workers execute multiple operators from different

segments of a query plan at the same time.
→ Still need exchange operators to combine intermediate

results from segments.

Also called pipelined parallelism.

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT *
 FROM A
 JOIN B
 JOIN C
 JOIN D

INTER-OPERATOR PARALLELISM

11

A B

⨝

C D

⨝

⨝

A

⨝
B

⨝
C D

⨝

Exchange Exchange

Exchange

⨝

3 4

1 2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OBSERVATION

Instead of building a new DBMS from scratch, one
can instead use standalone libraries for executing
vectorized query operators on columnar data.
→ Input is a DAG of physical operators.
→ Require external scheduling and orchestration.

Notable implementations:
→ Velox
→ DataFusion
→ Intel OAP
→ Polars

13

THE COMPOSABLE DATA MANAGEMENT
SYSTEM MANIFESTO
VLDB 2023

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://velox-lib.io/
https://arrow.apache.org/datafusion/
https://oap-project.github.io/
https://pola.rs/
https://doi.org/10.14778/3603581.3603604
https://doi.org/10.14778/3603581.3603604

15-721 (Spring 2024)

META VELOX

Extensible C++ library to support high-
performance single-node query execution.
→ No SQL parser!
→ No meta-data catalog!
→ No cost-based optimizer!

Velox takes in a physical plan (DAG of operators) as
its input for execution. It then produces the output
to the specified location.

14

EXECUTION ENGINE
VLDB 2022

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3554821.3554829
https://dl.acm.org/doi/abs/10.14778/3554821.3554829

15-721 (Spring 2024)

VELOX: OVERVIEW

Push-based Vectorized Query Processing

Precompiled Primitives + Codegen Expressions (C++)

Arrow Compatible (extended)

Adaptive Query Optimization

Sort-Merge + Hash Joins

15

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

VELOX: STORAGE

Velox does not "own" data and it does not have a
proprietary on-disk data format.

Instead, it exposes APIs to define connectors to
retrieve data from systems and adapters to
decode/encode storage formats.
→ Systems: S3, HDFS
→ Formats: Parquet, ORC/DWRF, Alpha

16

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

VELOX: COMPONENTS

Type System

Expression Engine

Internal Data Representation

Function API

Operator Engine

Storage Connectors / Adapters

Resource Manager

17

Source: Pedro Pedreira

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/HgNP3d93Jb4

15-721 (Spring 2024)

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

OPERATOR OUTPUT

For tuple r ∈ R and tuple s ∈ S that
match on join attributes, concatenate
rand s together into a new tuple.

Output contents can vary:
→ Depends on processing model
→ Depends on storage model
→ Depends on data requirements in query

27

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

OPERATOR OUTPUT

For tuple r ∈ R and tuple s ∈ S that
match on join attributes, concatenate
rand s together into a new tuple.

Output contents can vary:
→ Depends on processing model
→ Depends on storage model
→ Depends on data requirements in query

28

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OPERATOR OUTPUT: DATA

Early Materialization:
→ Copy the values for the attributes in outer

and inner tuples into a new output tuple.

id name

123 abc

id value cdate

123 1000 2/14/2024

123 2000 2/14/2024
⨝

R(id,name) S(id,value,cdate)

R.id R.name S.id S.value S.cdate

123 abc 123 1000 2/14/2024

123 abc 123 2000 2/14/2024

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

29

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OPERATOR OUTPUT: DATA

Early Materialization:
→ Copy the values for the attributes in outer

and inner tuples into a new output tuple.

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

pR.id R.name S.id S.value S.cdate

123 abc 123 1000 2/14/2024

123 abc 123 2000 2/14/2024

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

30

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OPERATOR OUTPUT: DATA

Early Materialization:
→ Copy the values for the attributes in outer

and inner tuples into a new output tuple.

Subsequent operators in the query
plan never need to go back to the base
tables to get more data.

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

31

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OPERATOR OUTPUT: RECORD IDS

Late Materialization:
→ Only copy the joins keys along with the

tuple IDs (e.g., column offsets) of the
matching tuples.

20

id name

123 abc

id value cdate

123 1000 2/14/2024

123 2000 2/14/2024
⨝

R(id,name) S(id,value,cdate)

R.id R.TID S.id S.TID

123 R.### 123 S.###

123 R.### 123 S.###

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OPERATOR OUTPUT: RECORD IDS

Late Materialization:
→ Only copy the joins keys along with the

tuple IDs (e.g., column offsets) of the
matching tuples.

20

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

pR.id R.TID S.id S.TID

123 R.### 123 S.###

123 R.### 123 S.###

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OPERATOR OUTPUT: RECORD IDS

Late Materialization:
→ Only copy the joins keys along with the

tuple IDs (e.g., column offsets) of the
matching tuples.

Ideal for column stores because the
DBMS does not copy data that is not
needed for the query.

20

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OBSERVATION

The encoding schemes for Parquet, ORC, and other
file formats are different enough that the DBMS
cannot use the same handler code for each format.
→ Too much engineering overhead to maintain multiple

version of the same operators.

Instead, the DBMS converts all input data to a
single internal representation that it propagates
through a query plan.

21

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

INTERNAL REPRESENTATION

How the DBMS stores and encodes vectors of data
that it passes between query operators.
→ All values must be fixed-length to use offsets to find

corresponding values across columns.

Ideal properties:
→ Move data structures without serializing.
→ Zero-copy shared memory access.

22

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

APACHE ARROW

Self-describing, language-agnostic in-memory
columnar data format for cache-efficient +
vectorized execution engines.
→ Supports both random + sequential access patterns.
→ Compiles basic expressions with LLVM (Gandiva).
→ Also provides additional resource management and

communication components.

Arrow only supports two lightweight encoding
schemes (Dictionary, RLE).

23

Source: Wes McKinney

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://arrow.apache.org/docs/cpp/gandiva.html
https://arrow.apache.org/docs/format/Columnar.html#dictionary-encoded-layout
https://arrow.apache.org/docs/format/Columnar.html#run-end-encoded-layout
https://youtu.be/YhF8YR0OEFk?t=47

15-721 (Spring 2024)

4-bytes 8-bytes

STRING STORAGE

Arrow originally stored strings as
fixed-length pointers to an offset in a
byte array.

Velox extended Arrow it to use

→ Fixed-length portion contains size +
prefix + payload.

→ Payload contains full-string if it is 16-
bytes or less. Otherwise, it is pointer ot
the full string.

24

German-style String Storage

5

size pointer

AndyP

AndyP|AndyP sm
ells bad!|...

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

4-bytes 8-bytes

STRING STORAGE

Arrow originally stored strings as
fixed-length pointers to an offset in a
byte array.

Velox extended Arrow it to use

→ Fixed-length portion contains size +
prefix + payload.

→ Payload contains full-string if it is 16-
bytes or less. Otherwise, it is pointer ot
the full string.

24

German-style String Storage

5

size pointer

AndyP smells bad!

AndyP|AndyP sm
ells bad!|...

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

4-bytes 4-bytes 8-bytes

4-bytes 8-bytes

STRING STORAGE

Arrow originally stored strings as
fixed-length pointers to an offset in a
byte array.

Velox extended Arrow it to use

→ Fixed-length portion contains size +
prefix + payload.

→ Payload contains full-string if it is 16-
bytes or less. Otherwise, it is pointer ot
the full string.

24

5 Andy PAndyP

size prefix suffix

German-style String Storage

5

size pointer

AndyP smells bad!

AndyP|AndyP sm
ells bad!|...

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

4-bytes 4-bytes 8-bytes

4-bytes 8-bytes

STRING STORAGE

Arrow originally stored strings as
fixed-length pointers to an offset in a
byte array.

Velox extended Arrow it to use

→ Fixed-length portion contains size +
prefix + payload.

→ Payload contains full-string if it is 16-
bytes or less. Otherwise, it is pointer ot
the full string.

24

AndyP smells bad!

5 Andy PAndyP

AndyP smells bad! 17 Andy

size prefix suffix

pointer

full string

German-style String Storage

5

size pointer

AndyP smells bad!

AndyP|AndyP sm
ells bad!|...

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

4-bytes 4-bytes 8-bytes

4-bytes 8-bytes

STRING STORAGE

Arrow originally stored strings as
fixed-length pointers to an offset in a
byte array.

Velox extended Arrow it to use

→ Fixed-length portion contains size +
prefix + payload.

→ Payload contains full-string if it is 16-
bytes or less. Otherwise, it is pointer ot
the full string.

24

AndyP smells bad!

5 Andy PAndyP

AndyP smells bad! 17 Andy

size prefix suffix

pointer

full string

German-style String Storage

5

size pointer

AndyP smells bad!

AndyP|AndyP sm
ells bad!|...

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://twitter.com/_Felipe/status/1717660315347718205

15-721 (Spring 2024)

4-bytes 4-bytes 8-bytes

4-bytes 8-bytes

STRING STORAGE

Arrow originally stored strings as
fixed-length pointers to an offset in a
byte array.

Velox extended Arrow it to use

→ Fixed-length portion contains size +
prefix + payload.

→ Payload contains full-string if it is 16-
bytes or less. Otherwise, it is pointer ot
the full string.

24

AndyP smells bad!

5 Andy PAndyP

AndyP smells bad! 17 Andy

size prefix suffix

pointer

full string

German-style String Storage

5

size pointer

AndyP smells bad!

AndyP|AndyP sm
ells bad!|...

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://twitter.com/_Felipe/status/1717660315347718205
https://twitter.com/_Felipe/status/1717660315347718205

15-721 (Spring 2024)

4-bytes 4-bytes 8-bytes

4-bytes 8-bytes

STRING STORAGE

Arrow originally stored strings as
fixed-length pointers to an offset in a
byte array.

Velox extended Arrow it to use

→ Fixed-length portion contains size +
prefix + payload.

→ Payload contains full-string if it is 16-
bytes or less. Otherwise, it is pointer ot
the full string.

24

AndyP smells bad!

5 Andy PAndyP

AndyP smells bad! 17 Andy

size prefix suffix

pointer

full string

German-style String Storage

5

size pointer

AndyP smells bad!

AndyP|AndyP sm
ells bad!|...

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://twitter.com/_Felipe/status/1717660315347718205
https://twitter.com/_Felipe/status/1717660315347718205
https://www.reddit.com/r/Python/comments/1ajft37/polars_why_we_have_rewritten_our_stringbinary_type/kp1nmw9/?context=3

15-721 (Spring 2024)

4-bytes 4-bytes 8-bytes

4-bytes 8-bytes

STRING STORAGE

Arrow originally stored strings as
fixed-length pointers to an offset in a
byte array.

Velox extended Arrow it to use

→ Fixed-length portion contains size +
prefix + payload.

→ Payload contains full-string if it is 16-
bytes or less. Otherwise, it is pointer ot
the full string.

24

AndyP smells bad!

5 Andy PAndyP

AndyP smells bad! 17 Andy

size prefix suffix

pointer

full string

5

size pointer

AndyP smells bad!

AndyP|AndyP sm
ells bad!|...

Umbra-style String Storage

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SUBSTRAIT (2021)

Open-source specification to represent
relational algebra query plans.
→ Think of it like Arrow but for query plans.

The idea is that systems can share physical
query plans with each other without having
to convert them into a native API/DSL.
→ Federated DBMSs are hard.

46

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DATAFUSION (2019)

Extensible vectorized execution library for
Apache Arrow data.
→ Written in Rust for the kids!

Provides more front-end functionality features to
build a complete DBMS than Velox
→ SQL and DataFrame APIs.
→ Query Optimizer

Examples: InfluxDB, CeresDB, CnosDB, Seafowl

47

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TODAY’S AGENDA

Parallel Execution

Operator Output

Intermediate Data Representation

Expression Evaluation

Adaptive Execution

25

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100;

EXPRESSION EVALUATION

The DBMS represents a WHERE clause
as an expression tree.

The nodes in the tree represent
different expression types:
→ Comparisons (=, <, >, !=)
→ Conjunction (AND), Disjunction (OR)
→ Arithmetic Operators (+, -, *, /, %)
→ Constant Values
→ Tuple Attribute References
→ Functions Attribute(S.id)

=

Attribute(R.id)

AND

>

Attribute(value) Constant(100)

49

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

EXPRESSION EVALUATION

Evaluating predicates by traversing a
tree is terrible for the CPU.
→ The DBMS traverses the tree and for each

node that it visits, it must figure out what
the operator needs to do.

Constant(1)

=

Attribute(s.val)

50

SELECT * WHERE s.val = 1;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

EXPRESSION EVALUATION

Constant(1)

=

Attribute(s.val)

bool check(val) {
 return (val == 1);
}

Machine Code

gcc, Clang, LLVM, …

51

SELECT * WHERE s.val = 1;
Evaluating predicates by traversing a
tree is terrible for the CPU.
→ The DBMS traverses the tree and for each

node that it visits, it must figure out what
the operator needs to do.

A better approach is to evaluate the
expression directly.

An even better approach is to
vectorize it evaluate a batch of tuples
at the same time…

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

VELOX: EXPRESSION ENGINE

Velox converts expression trees into a flattened
intermediate representation that they then execute
during query processing.
→ Think of it like an array of function pointers to

precompiled (untemplated) primitives.

Experimental branch transpiles IR into C++ code
and then compiles to machine code via exec.

28

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://github.com/facebookincubator/velox/tree/main/velox/experimental/codegen

15-721 (Spring 2024)

VELOX: EXPRESSION ENGINE

Constant Folding:
→ Compute a sub-expression on a constant

value once and reuse result per tuple.

29

Source: Deepak Majeti

=

UPPER() UPPER()

Constant('wutang')Attribute(col1)

WHERE UPPER(col1) = UPPER('wutang');

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/WBvTHAUMLYU?t=1237

15-721 (Spring 2024)

VELOX: EXPRESSION ENGINE

Constant Folding:
→ Compute a sub-expression on a constant

value once and reuse result per tuple.

29

Source: Deepak Majeti

=

UPPER()

Attribute(col1)

Constant('WUTANG')

WHERE UPPER(col1) = UPPER('wutang');

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/WBvTHAUMLYU?t=1237

15-721 (Spring 2024)

VELOX: EXPRESSION ENGINE

Constant Folding:
→ Compute a sub-expression on a constant

value once and reuse result per tuple.

Common Sub-Expr. Elimination:
→ Identify repeated sub-expressions that can

be shared across expression tree.

29

Source: Deepak Majeti

=

UPPER()

Attribute(col1)

Constant('WUTANG')

STRPOS()

OR

Op(<)

Constant('x') Attribute(col1)

Constant(2)

Op(>)

Constant(8)STRPOS()

Constant('x') Attribute(col1)

WHERE UPPER(col1) = UPPER('wutang');

WHERE STRPOS('x', col1) < 2
 OR STRPOS('x', col1) > 8

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/WBvTHAUMLYU?t=1237

15-721 (Spring 2024)

VELOX: EXPRESSION ENGINE

Constant Folding:
→ Compute a sub-expression on a constant

value once and reuse result per tuple.

Common Sub-Expr. Elimination:
→ Identify repeated sub-expressions that can

be shared across expression tree.

29

Source: Deepak Majeti

=

UPPER()

Attribute(col1)

Constant('WUTANG')

STRPOS()

OR

Op(<)

Constant('x') Attribute(col1)

Constant(2)

Op(>)

Constant(8)

WHERE UPPER(col1) = UPPER('wutang');

WHERE STRPOS('x', col1) < 2
 OR STRPOS('x', col1) > 8

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/WBvTHAUMLYU?t=1237

15-721 (Spring 2024)

OBSERVATION

An execution engine is only as good as the query
plan that it has. Query optimizers rely on cost
models derived from statistics extracted from data.
→ Bad query plans negate all the optimizations that we've

talked about so far.

But how can the DBMS optimize a query if there
are no statistics?
→ Data files the DBMS has never seen before.
→ Query APIs from other DBMSs (connectors).

30

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

ADAPTIVE QUERY PROCESSING

Allow the execution engine to modify a query's plan
and expression trees while it is running.

The goal is to use information gathered from
executing some part of the query to decide how to
best proceed with executing the rest of the query.
→ In the extreme case, the DBMS can give up and return the

query to the optimizer but with new information.

We will discuss how to modify query plans later in
the semester.

31

ADAPTIVE QUERY PROCESSING
IN THE LOOKING GLASS
CIDR 2005

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://ilpubs.stanford.edu:8090/683/
http://ilpubs.stanford.edu:8090/683/

15-721 (Spring 2024)

VELOX: EXPRESSION ADAPTIVITY

32

Source: Pedro Pedreira

WHERE SLOW_FUNC(col1) = true
 AND FAST_FUNC(col2) = true

9,845 10,056

8,600

1,809
869 916

117 752

0

4000

8000

12000

lower upper substr strpos

R
u

n
ti

m
e

(n
s)

UTF-8 ASCII

143

53

31

0

50

100

150

Baseline ASCII ASCII + Reuse

R
u

n
ti

m
e

/
R

o
w

 (
n

s)

Predicate Reordering
→ Decide the ordering of predicates based on

their selectivity and computational cost.

Column Prefetching
→ Asynchronous retrieval of columns during

expression evaluations.

Not Null Fast Paths
→ Switch to faster functions that skip null

checking if input vector has no null values.

Elide ASCII Encoding Checks
→ Use faster ASCII funcs if no UTF-8 data.
→ Bonus: Reuse buffers for output!

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/HgNP3d93Jb4
https://facebookincubator.github.io/velox/develop/expression-evaluation.html#flat-no-nulls-fast-path

15-721 (Spring 2024)

PARTING THOUGHTS

Today's lecture is a quick overview of more design
considerations when building an execution engine.
→ Each of these topics could be an entire lecture on its own.

Arrow is the best choice for internal data
representation. It continues to evolve and improve.

33

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

NEXT CLASS

Vectorized Operator Algorithms

34

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

	Introduction
	Slide 1: Query Execution & Processing II
	Slide 2: LAST CLASS
	Slide 3: TODAY’S AGENDA

	Parallelism
	Slide 4: PARALLEL EXECUTION
	Slide 5: INTER-QUERY PARALLELISM
	Slide 6: INTRA-QUERY PARALLELISM
	Slide 7: INTRA-OPERATOR PARALLELISM
	Slide 8: INTRA-OPERATOR PARALLELISM
	Slide 9: INTRA-OPERATOR PARALLELISM
	Slide 10: INTRA-OPERATOR PARALLELISM
	Slide 11: INTRA-OPERATOR PARALLELISM
	Slide 12: INTRA-OPERATOR PARALLELISM
	Slide 13: INTRA-OPERATOR PARALLELISM
	Slide 14: INTRA-OPERATOR PARALLELISM
	Slide 15: INTRA-OPERATOR PARALLELISM
	Slide 16: INTRA-OPERATOR PARALLELISM
	Slide 17: INTRA-OPERATOR PARALLELISM
	Slide 18: INTRA-OPERATOR PARALLELISM
	Slide 19: EXCHANGE OPERATOR
	Slide 20: INTER-OPERATOR PARALLELISM
	Slide 21: INTER-OPERATOR PARALLELISM

	Velox
	Slide 22: OBSERVATION
	Slide 23: META VELOX
	Slide 24: VELOX: OVERVIEW
	Slide 25: VELOX: STORAGE
	Slide 26: VELOX: COMPONENTS

	Operator Output
	Slide 27: OPERATOR OUTPUT
	Slide 28: OPERATOR OUTPUT
	Slide 29: OPERATOR OUTPUT: DATA
	Slide 30: OPERATOR OUTPUT: DATA
	Slide 31: OPERATOR OUTPUT: DATA
	Slide 32: OPERATOR OUTPUT: RECORD IDS
	Slide 33: OPERATOR OUTPUT: RECORD IDS
	Slide 34: OPERATOR OUTPUT: RECORD IDS

	Internal Representation
	Slide 35: OBSERVATION
	Slide 36: INTERNAL REPRESENTATION
	Slide 37: APACHE ARROW
	Slide 38: STRING STORAGE
	Slide 39: STRING STORAGE
	Slide 40: STRING STORAGE
	Slide 41: STRING STORAGE
	Slide 42: STRING STORAGE
	Slide 43: STRING STORAGE
	Slide 44: STRING STORAGE
	Slide 45: STRING STORAGE
	Slide 46: SUBSTRAIT (2021)
	Slide 47: DATAFUSION (2019)

	Expression Evaluation
	Slide 48: TODAY’S AGENDA
	Slide 49: EXPRESSION EVALUATION
	Slide 50: EXPRESSION EVALUATION
	Slide 51: EXPRESSION EVALUATION
	Slide 52: VELOX: EXPRESSION ENGINE
	Slide 53: VELOX: EXPRESSION ENGINE
	Slide 54: VELOX: EXPRESSION ENGINE
	Slide 55: VELOX: EXPRESSION ENGINE
	Slide 56: VELOX: EXPRESSION ENGINE

	Adaptivity
	Slide 57: OBSERVATION
	Slide 58: ADAPTIVE QUERY PROCESSING
	Slide 59: VELOX: EXPRESSION ADAPTIVITY

	Conclusion
	Slide 60: PARTING THOUGHTS
	Slide 61: NEXT CLASS

