
ADVANCED
DATABASE

SYSTEMS

Andy Pavlo
CMU 15-721
Spring 202407

Query
Compilation

& Code
Generation

https://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/
https://db.cs.cmu.edu/

15-721 (Spring 2024)

LAST CLASS

How to use SIMD to vectorize core database
algorithms for sequential scans.
→ Intra-query parallelism

The research literature in the 2010s can give the
impression that vectorization and JIT compilation
are mutually exclusive.

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OPTIMIZATION GOALS

Approach #1: Reduce Instruction Count
→ Use fewer instructions to do the same amount of work.

Approach #2: Reduce Cycles per Instruction
→ Execute more CPU instructions in fewer cycles.

Approach #3: Parallelize Execution
→ Use multiple threads to compute each query in parallel.

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

MICROSOFT REMARK

After minimizing the disk I/O during query
execution, the only way to increase throughput is to
reduce the number of instructions executed.
→ To go 10x faster, the DBMS must execute 90% fewer

instructions.
→ To go 100x faster, the DBMS must execute 99% fewer

instructions.

4

COMPILATION IN THE MICROSOFT SQL SERVER
HEKATON ENGINE
IEEE DATA ENGINEERING BULLETIN 2011

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://sites.computer.org/debull/A14mar/p22.pdf
http://sites.computer.org/debull/A14mar/p22.pdf

15-721 (Spring 2024)

TODAY’S AGENDA

Background

Source-to-Source Compilation / Transpilation

JIT Compilation

Real-world Implementations

Project Status Discussion

5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OBSERVATION

One way to achieve a significant reduction in
instructions is through code specialization.

This means generating code that is specific to a task
in the DBMS (e.g., one query).

Most code is written to make it easy for humans to
understand rather than performance…

6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

QUERY INTERPRETATION

7

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id, COUNT(*)

σB.val=?+1

B C

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

QUERY INTERPRETATION

7

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id, COUNT(*)

σB.val=?+1

B C

⨝
for t1 in left.next():
 buildHashTable(t1)
for t2 in right.next():
 if probe(t2): emit(t1⨝t2)

for t in child.next():
 if evalPred(t): emit(t)σ ⨝

for t1 in left.next():
 buildHashTable(t1)
for t2 in right.next():
 if probe(t2): emit(t1⨝t2)

for t in A:
 emit(t)A

for t in B:
 emit(t)B for t in C:

 emit(t)C

for t in child.next():
 if evalPred(t): emit(t)σ

Γ
for t in child.next():
 buildAggregateTable(t)
for t in aggregateTable:
 emit(t)

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Execution Context

EXPRESSION EVALUATION

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

Attribute(S.val)

Constant(1)

Op(=)

Op(+)

Parameter($1)

9

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Execution Context

EXPRESSION EVALUATION

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

Attribute(S.val)

Constant(1)

Op(=)

Op(+)

Parameter($1)

10

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

1000

Execution Context

EXPRESSION EVALUATION

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

Attribute(S.val)

Constant(1)

Op(=)

Op(+)

Parameter($1)

11

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

1000

999

Execution Context

EXPRESSION EVALUATION

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

Attribute(S.val)

Constant(1)

Op(=)

Op(+)

Parameter($1)

12

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

1000

999 1

Execution Context

EXPRESSION EVALUATION

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

Attribute(S.val)

Constant(1)

Op(=)

Op(+)

Parameter($1)

13

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

1000

999 1

1000

Execution Context

EXPRESSION EVALUATION

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

Attribute(S.val)

Constant(1)

Op(=)

Op(+)

Parameter($1)

14

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

1000

999 1

true

1000

Execution Context

EXPRESSION EVALUATION

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

Attribute(S.val)

Constant(1)

Op(=)

Op(+)

Parameter($1)

15

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CODE SPECIALIZATION

The DBMS generates code for any CPU-intensive
task that has a similar execution pattern on different
inputs.
→ Access Methods
→ Stored Procedures
→ Query Operator Execution
→ Predicate Evaluation
→ Logging Operations

For query-focused compilation, the DBMS
(typically) specializes it after generating the physical
plan for a query.

9

Most Common

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CODE SPECIALIZATION BENEFITS

Attribute types are known a priori.
→ Data access function calls can be converted to inline

pointer casting.

Predicates are known a priori.
→ They can be evaluated using primitive data comparisons.

No function calls in loops
→ Allows the compiler to efficiently distribute data to

registers and increase cache reuse.

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CODE SPECIALIZATION METHODS

Approach #1: Transpilation
→ Write code that converts a relational query plan into

imperative language source code and then run it through a
conventional compiler to generate native code.

Approach #2: JIT Compilation
→ Generate an intermediate representation (IR) of the query

that the DBMS then compiles into native code .

11

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

HIQUE: HOLISTIC CODE GENERATION

For a given query plan, create a C/C++ program
that implements that query’s execution.
→ Bake in all the predicates and type conversions.

Use an off-shelf compiler to convert the code into a
shared object, link it to the DBMS process, and then
invoke the exec function.

12

GENERATING CODE FOR HOLISTIC
QUERY EVALUATION
ICDE 2010

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://doi.ieeecomputersociety.org/10.1109/ICDE.2010.5447892
https://doi.ieeecomputersociety.org/10.1109/ICDE.2010.5447892

15-721 (Spring 2024)

Interpreted Plan

HIQUE: OPERATOR TEMPLATES

13

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Interpreted Plan

HIQUE: OPERATOR TEMPLATES

13

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Templated PlanInterpreted Plan

HIQUE: OPERATOR TEMPLATES

13

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
 tuple = table.data + t ∗ tuple_size
 val = (tuple+predicate_offset)
 if (val == parameter_value + 1):
 emit(tuple)

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Templated PlanInterpreted Plan

HIQUE: OPERATOR TEMPLATES

13

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
 tuple = table.data + t ∗ tuple_size
 val = (tuple+predicate_offset)
 if (val == parameter_value + 1):
 emit(tuple)

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

HIQUE: DBMS INTEGRATION

The generated query code can invoke any other
function in the DBMS. This allows it to use all the
same components as interpreted queries.
→ Network Handlers
→ Buffer Pool Manager
→ Concurrency Control
→ Logging / Checkpoints
→ Indexes

Debugging is (relatively) easy because you step
through the generated source code.

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

HIQUE: EVALUATION

Generic Iterators
→ Canonical model with generic predicate evaluation.

Optimized Iterators
→ Type-specific iterators with inline predicates.

Generic Hardcoded
→ Handwritten code with generic iterators/predicates.

Optimized Hardcoded
→ Direct tuple access with pointer arithmetic.

HIQUE
→ Query-specific specialized code.

15

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

QUERY COMPILATION EVALUATION

16

0

50

100

150

200

250

Generic
Iterators

Optimized
Iterators

Generic
Hardcoded

Optimized
Hardcoded

HIQUE

E
xe

cu
ti

on
 T

im
e

(m
s)

L2-cache Miss Memory Stall Instruction Exec.

Intel Core 2 Duo 6300 @ 1.86GHz
Join Query: 10k⨝ 10k→10m

Source: Konstantinos Krikellas

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/konstantinoskrikellas

15-721 (Spring 2024)

QUERY COMPILATION COST

17

121 160
213

274

403

619

0

200

400

600

800

Q1 Q3 Q10

C
om

pi
la

ti
on

 T
im

e
(m

s)

Compile (-O0) Compile (-O2)

Intel Core 2 Duo 6300 @ 1.86GHz
TPC-H Queries (Scalefactor=1)

Source: Konstantinos Krikellas

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/konstantinoskrikellas

15-721 (Spring 2024)

OBSERVATION

Relational operators are a useful way to reason
about a query but are not the most efficient way to
execute it.

It takes a (relatively) long time to compile a C/C++
source file into executable code.

HIQUE also does not support for full pipelining.

18

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

HYPER: JIT QUERY COMPILATION

Compile queries in-memory into native code using
the LLVM toolkit.
→ Instead of emitting C++ code, HyPer emits LLVM IR.

Aggressive operator fusion within pipelines to keep
a tuple in CPU registers for as long as possible.
→ Push-based vs. Pull-based
→ Data Centric vs. Operator Centric

19

EFFICIENTLY COMPILING EFFICIENT QUERY PLANS
FOR MODERN HARDWARE
VLDB 2011

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/p539-neumann.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/p539-neumann.pdf

15-721 (Spring 2024)

PIPELINED OPERATORS

20

⨝A.id=C.a_id

σ A.val=123

A

⨝B.id=C.b_id

ΓB.id,COUNT(*)

σB.val=?+1

B C

Pipeline Boundaries #1

#4

#2

#3

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PUSH-BASED EXECUTION

21

Generated Query PlanSELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

for t in A:
 if t.val == 123:
 Materialize t in HashTable ⨝(A.id=C.a_id)

for t in B:
 if t.val == <param> + 1:
 Aggregate t in HashTable Γ(B.id)

for t in Γ(B.id):
 Materialize t in HashTable ⨝(B.id=C.b_id)

for t3 in C:
 for t2 in ⨝(B.id=C.b_id):
 for t1 in ⨝(A.id=C.a_id):
 emit(t1⨝t2⨝t3)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PUSH-BASED EXECUTION

21

Generated Query Plan

#1

#4

#2

#3

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

for t in A:
 if t.val == 123:
 Materialize t in HashTable ⨝(A.id=C.a_id)

for t in B:
 if t.val == <param> + 1:
 Aggregate t in HashTable Γ(B.id)

for t in Γ(B.id):
 Materialize t in HashTable ⨝(B.id=C.b_id)

for t3 in C:
 for t2 in ⨝(B.id=C.b_id):
 for t1 in ⨝(A.id=C.a_id):
 emit(t1⨝t2⨝t3)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

QUERY COMPILATION EVALUATION

22

35

125
80 117

1105

142
374

141 203

1416

98
257

436
1107

72

218
112

8168 12028

4221
6555

16410

3830

15212

1

10

100

1000

10000

100000

Q1 Q2 Q3 Q4 Q5

E
xe

cu
ti

on
 T

im
e

(m
s)

Oracle MonetDB VectorWise HyPer (C++) HyPer (LLVM)

Dual Socket Intel Xeon X5770 @ 2.93GHz
TPC-H Queries (Scalefactor=1)

Source: Thomas Neumann

 C
ra

sh
ed

!

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://sites.computer.org/debull/A14mar/p3.pdf

15-721 (Spring 2024)

QUERY COMPILATION COST

23

274

403

619

13 37 15
0

200

400

600

800

Q1 Q2 Q3

C
om

pi
la

ti
on

 T
im

e
(m

s)

HIQUE HyPer

HIQUE (-O2) vs. HyPer
TPC-H Queries

Source: Konstantinos Krikellas

Warning: Not a scientific comparison!

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/konstantinoskrikellas

15-721 (Spring 2024)

OBSERVATION

HyPer's query compilation time grows super-
linearly relative to the query size.
→ # of joins
→ # of predicates
→ # of aggregations

Not a big issue with OLTP applications.

Major problem with OLAP workloads.

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

HYPER: ADAPTIVE EXECUTION

Generate LLVM IR for the query and immediately
start executing the IR using an interpreter.

Then the DBMS compiles the query in the
background.

When the compiled query is ready, seamlessly
replace the interpretive execution.
→ For each morsel, check to see whether the compiled

version is available.

25

ADAPTIVE EXECUTION OF COMPILED QUERIES
ICDE 2018

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/kohn-icde2018.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/kohn-icde2018.pdf

15-721 (Spring 2024)

HYPER: ADAPTIVE EXECUTION

26

Optimizer
(0.2 ms)

Byte Code

SQL Query

Code Generator
(0.7 ms)

Query Plan

LLVM Passes
(25 ms)

Byte Code
Compiler
(0.4 ms)

Unoptimized
LLVM Compiler

(6 ms)

Optimized
LLVM Compiler

(17 ms)

LLVM IR

LLVM IR

LLVM IR

LLVM IR

x86 Code

x86 Code
Source: Andre Kohn

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.in.tum.de/~kohn/index.shtml?lang=en

15-721 (Spring 2024)

HYPER: ADAPTIVE EXECUTION

27

858

94

323 352 362

161

13

104
67 6077

8

80
45 37

1

10

100

1000

Q1 Q2 Q3 Q4 Q5

E
xe

cu
ti

on
 T

im
e

(m
s)

Byte Code Unoptimized LLVM Optimized LLVM

AMD Ryzen 7 1700X @ 3.4GHz (One Thread)
TPC-H Queries

Source: Andre Kohn

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.in.tum.de/~kohn/index.shtml?lang=en

15-721 (Spring 2024)

REAL-WORLD IMPLEMENTATIONS

28

JVM-based
Spark

Neo4j

Splice Machine

Presto / Trino

OrientDB

Tajo

Derby

LLVM-based
SingleStore

VitesseDB

PostgreSQL (2018)

CMU Peloton

CMU NoisePage

TUM LingoDB

Custom
IBM System R

Actian Vector

Microsoft Hekaton

SQLite

TUM HyPer

TUM Umbra

QuestDB

Transpilation
Amazon Redshift

Oracle

MemSQL (2016)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

IBM SYSTEM R

A primitive form of code generation and query
compilation was used by IBM in 1970s.
→ Compiled SQL statements into assembly code by selecting

code templates for each operator.

Technique was abandoned when IBM built SQL/DS
and DB2 in the 1980s:
→ High cost of external function calls
→ Poor portability
→ Software engineer complications

29

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://dl.acm.org/citation.cfm?id=358784
http://dl.acm.org/citation.cfm?id=358784

15-721 (Spring 2024)

IBM SYSTEM R

A primitive form of code generation and query
compilation was used by IBM in 1970s.
→ Compiled SQL statements into assembly code by selecting

code templates for each operator.

Technique was abandoned when IBM built SQL/DS
and DB2 in the 1980s:
→ High cost of external function calls
→ Poor portability
→ Software engineer complications

29

A HISTORY AND EVALUATION OF SYSTEM R
COMMUNICATIONS OF THE ACM 1981

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://dl.acm.org/citation.cfm?id=358784
http://dl.acm.org/citation.cfm?id=358784
http://dl.acm.org/citation.cfm?id=358784

15-721 (Spring 2024)

VECTORWISE: PRECOMPILED PRIMITIVES

Pre-compiles thousands of "primitives" that
perform basic operations on typed data.
→ Using simple kernels for each primitive means that they

are easier to vectorize.

The DBMS then executes a query plan that invokes
these primitives at runtime.
→ Function calls are amortized over multiple tuples.
→ The output of a primitive are the offsets of tuples that

30

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2024)

VECTORWISE: PRECOMPILED PRIMITIVES

31

SELECT * FROM foo
WHERE str_col = 'abc'
 AND int_col = 4;

foo

str_col='abc' &&
int_col=4s

vec<offset> sel_eq_str(vec<string> col, string val) {
 vec<offset> res;
 for (offset i = 0; i < col.size(); i++)
 if (col[i] == val) res.append(i);
 return (res);
}

vec<offset> sel_eq_int(vec<int> col, int val,
 vec<offset> positions) {
 vec<offset> res;
 for (offset i : positions)
 if (col[i] == val) res.append(i);
 return (res);
}

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

AMAZON REDSHIFT

Convert query fragments into templated C++ code.
→ Push-based execution with vectorization.

DBMS checks whether there are already exists a
compiled version of each templated fragment in the
customer's local cache.

If fragment does not exist in the local cache, then it
checks a global cache for the entire fleet of Redshift
customers.

32

AMAZON REDSHIFT RE-INVENTED
SIGMOD 2022

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/10.1145/3514221.3526045
https://dl.acm.org/doi/10.1145/3514221.3526045

15-721 (Spring 2024)

ORACLE

Convert PL/SQL stored procedures into Pro*C
code and then compiled into native C/C++ code.

They also put Oracle-specific operations directly in
the SPARC chips as co-processors.
→ Memory Scans
→ Bit-pattern Dictionary Compression
→ Vectorized instructions designed for DBMSs
→ Security/encryption

33

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Pro*C

15-721 (Spring 2024)

MICROSOFT HEKATON

Can compile both procedures and SQL.
→ Non-Hekaton queries can access Hekaton tables through

compiled inter-operators.

Generates C code from an imperative syntax tree,
compiles it into DLL, and links at runtime.

Employs safety measures to prevent somebody from
injecting malicious code in a query.

34

COMPILATION IN THE MICROSOFT SQL SERVER
HEKATON ENGINE
IEEE DATA ENGINEERING BULLETIN 2011

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://sites.computer.org/debull/A14mar/p22.pdf
http://sites.computer.org/debull/A14mar/p22.pdf

15-721 (Spring 2024)

SQLITE

DBMS converts a query plan into opcodes, and then
executes them in a custom VM (bytecode engine).
→ Also known as "Virtual DataBase Engine" (VDBE)
→ Opcode specification can change across versions.

SQLite's VM ensures that queries execute the same
in any possible environment.

35

Source: Richard Hipp

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.sqlite.org/opcode.html

15-721 (Spring 2024)

TUM UMBRA

Instead of implementing a separate
bytecode interpreter, Umbra's
"FlyingStart" adaptive execution
framework generates custom IR that
maps to x86 assembly in a single pass.
→ Manually performs dead code elimination.
→ The DBMS is a basically compiler.

They also wrote their own debugger!

36

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/10.1007/s00778-020-00643-4
https://dl.acm.org/doi/10.1007/s00778-020-00643-4

15-721 (Spring 2024)

TUM UMBRA

Instead of implementing a separate
bytecode interpreter, Umbra's
"FlyingStart" adaptive execution
framework generates custom IR that
maps to x86 assembly in a single pass.
→ Manually performs dead code elimination.
→ The DBMS is a basically compiler.

They also wrote their own debugger!

36

TIDY TUPLES AND FLYING START: FAST COMPILATION AND
FAST EXECUTION OF RELATIONAL QUERIES IN UMBRA
VLDB JOURNAL 2021

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/10.1007/s00778-020-00643-4
https://dl.acm.org/doi/10.1007/s00778-020-00643-4
https://dl.acm.org/doi/10.1145/3395032.3395321

15-721 (Spring 2024)

JAVA DATABASES

There are several JVM-based DBMSs that contain
custom code that emits JVM bytecode directly.
→ Spark
→ Neo4j
→ Splice Machine
→ Presto / Trino
→ Derby
→ Tajo

This functionally the same as generating LLVM IR.

37

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

APACHE SPARK

Introduced in the new Tungsten engine in 2015.

The system converts a query's WHERE clause
expression trees into Scala ASTs.

It then compiles these ASTs to generate JVM
bytecode, which is then executed natively.

Databricks abandoned this approach with their new
Photon engine in late 2010s.

38

SPARK SQL: RELATIONAL DATA PROCESSING IN SPARK
SIGMOD 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/citation.cfm?id=2742797
https://dl.acm.org/citation.cfm?id=2742797

15-721 (Spring 2024)

QUESTDB

Java-based time-series columnar DBMS.

The Java front-end converts WHERE clause
predicates into IR and then uses a C++ backend to
compile the IR into vectorized machine code using
asmjit.

39

30

3.5 1.3 0.6
0

20

40

Single-Thread
No JIT

Single-Thread
With JIT

Multi-Thread
No JIT

Multi-Thread
With JIT

E
xe

cu
ti

on
 T

im
e

(s
ec

)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://asmjit.com/
https://questdb.io/blog/2022/01/12/jit-sql-compiler/

15-721 (Spring 2024)

SINGLESTORE (PRE–2016)

Performs the same C/C++ code generation as
HIQUE and then invokes gcc.

Converts all queries into a parameterized form and
caches the compiled query plan.

40

SELECT * FROM A
 WHERE A.id = ?

SELECT * FROM A
 WHERE A.id = 123

SELECT * FROM A
 WHERE A.id = 456

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SINGLESTORE (2016–PRESENT)

A query plan is converted into an imperative plan
expressed in a high-level imperative DSL.
→ MemSQL Programming Language (MPL)
→ Think of this as a C++ dialect.

DBMS then converts DSL into custom opcodes.
→ MemSQL Bit Code (MBC)
→ Think of this as JVM byte code.

Lastly, the DBMS compiles the opcodes into LLVM
IR and then to native code.

41

Source: Drew Paroski

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://docs.singlestore.com/managed-service/en/query-data/code-generation.html
http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html

15-721 (Spring 2024)

POSTGRESQL

Added support in 2018 (v11) for JIT compilation of
predicates and tuple deserialization with LLVM.
→ Relies on optimizer estimates to determine when to

compile expressions.

Automatically compiles Postgres' back-end C code
into LLVM C++ code to remove iterator calls.

42

Source: Dmitry Melnik

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.pgcon.org/2017/schedule/attachments/467_PGCon%202017-05-26%2015-00%20ISPRAS%20Dynamic%20Compilation%20of%20SQL%20Queries%20in%20PostgreSQL%20Using%20LLVM%20JIT.pdf

15-721 (Spring 2024)

POSTGRESQL

Added support in 2018 (v11) for JIT compilation of
predicates and tuple deserialization with LLVM.
→ Relies on optimizer estimates to determine when to

compile expressions.

Automatically compiles Postgres' back-end C code
into LLVM C++ code to remove iterator calls.

42

Source: Dmitry Melnik

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.pgcon.org/2017/schedule/attachments/467_PGCon%202017-05-26%2015-00%20ISPRAS%20Dynamic%20Compilation%20of%20SQL%20Queries%20in%20PostgreSQL%20Using%20LLVM%20JIT.pdf
https://anarazel.de/talks/fosdem-2018-02-03/jit.pdf

15-721 (Spring 2024)

VITESSEDB

Query accelerator for Postgres/Greenplum that uses
LLVM + intra-query parallelism.
→ JIT predicates
→ Push-based processing model
→ Indirect calls become direct or inlined.
→ Leverages hardware for overflow detection.

Does not support all of Postgres’ types and
functionalities. All DML operations are still
interpreted.

43

Source: CK Tan

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=PEmVuYjhQFo

15-721 (Spring 2024)

CMU NOISEPAGE (2019)

SingleStore-style conversion of query plans into a
database-oriented DSL.

Then compile the DSL into opcodes.

HyPer-style interpretation of opcodes while
compilation occurs in the background with LLVM.

44

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CMU NOISEPAGE (2019)

45

fun main() -> int {
 var ret = 0
 for (row in foo) {
 if (row.colA >= 50 and
 row.colB < 100000) {
 ret = ret + 1
 }
 }
 return ret
}

Source: Prashanth Menon

SELECT * FROM foo
 WHERE colA >= 50
 AND colB < 100000;

Function 0 <main>:
[3/4587]
 Frame size 8512 bytes (1 parameter, 20 locals)
 param hiddenRv: offset=0 size=8 align=8 type=*int32
 local ret: offset=8 size=4 align=4 type=int32
 local table_iter: offset=16 size=8312 align=8 type=tpl::sql::TableVectorIterator
 local vpi: offset=8328 size=8 align=8 type=*tpl::sql::VectorProjectionIterator
 local tmp1: offset=8336 size=1 align=1 type=bool
 local row: offset=8344 size=64 align=8 type=struct{Integer,Integer,Integer,Integer}
 local tmp2: offset=8408 size=1 align=1 type=bool
 local tmp3: offset=8416 size=8 align=8 type=*Integer
 local tmp4: offset=8424 size=8 align=8 type=*Integer
 local tmp5: offset=8432 size=8 align=8 type=*Integer
 local tmp6: offset=8440 size=8 align=8 type=*Integer
 local tmp7: offset=8448 size=1 align=1 type=bool
 local tmp8: offset=8449 size=2 align=1 type=Boolean
 local tmp9: offset=8456 size=16 align=8 type=Integer
 local tmp10: offset=8472 size=4 align=4 type=int32
 local tmp11: offset=8476 size=2 align=1 type=Boolean
 local tmp12: offset=8480 size=8 align=8 type=*Integer
 local tmp13: offset=8488 size=16 align=8 type=Integer
 local tmp14: offset=8504 size=4 align=4 type=int32
 local tmp15: offset=8508 size=4 align=4 type=int32

 0x00000000 AssignImm4
 0x0000000c TableVectorIteratorInit
 0x00000016 TableVectorIteratorGetVPI
 0x00000022 TableVectorIteratorNext
 0x0000002e JumpIfFalse
 0x0000003a VPIHasNext
 0x00000046 JumpIfFalse
 0x00000052 Lea
 0x00000062 VPIGetInteger
 0x00000072 Lea
 0x00000082 VPIGetInteger
 0x00000092 Lea
 0x000000a2 VPIGetInteger
 0x000000b2 Lea
 0x000000c2 VPIGetInteger
 0x000000d2 AssignImm4
 0x000000de InitInteger
 0x000000ea GreaterThanEqualInteger
 0x000000fa ForceBoolTruth
 0x00000106 JumpIfFalse
 0x00000112 Lea

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=HjMQbzBhTb4

15-721 (Spring 2024)

CMU NOISEPAGE (2019)

45

fun main() -> int {
 var ret = 0
 for (row in foo) {
 if (row.colA >= 50 and
 row.colB < 100000) {
 ret = ret + 1
 }
 }
 return ret
}

Source: Prashanth Menon

SELECT * FROM foo
 WHERE colA >= 50
 AND colB < 100000;

Interpreter

Optimized
LLVM Compiler

x86 Code

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=HjMQbzBhTb4

15-721 (Spring 2024)

VECTORIZATION VS. COMPILATION

Test-bed system to analyze the trade-offs between
vectorized execution and query compilation.

Implemented high-level algorithms the same in
each system but varied the implementation details
based on system architecture.
→ Example: Hash join algorithm is the same, but the systems

use different hash functions (Murmur2 vs. CRC32×2)

46

EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT COMPILED
AND VECTORIZED QUERIES BUT WERE AFRAID TO ASK
VLDB 2018

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3275366.3284966
https://dl.acm.org/doi/abs/10.14778/3275366.3284966

15-721 (Spring 2024)

IMPLEMENTATIONS

Approach #1: Tectorwise
→ Break operations into pre-compiled primitives.
→ Must materialize the output of primitives at each step.

Approach #2: Typer
→ Push-based processing model with JIT compilation.
→ Process a single tuple up entire pipeline without

materializing the intermediate results.

47

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TPC-H WORKLOAD

Q1: Fixed-point arithmetic, 4-group aggregation

Q6: Selective filters. Computationally inexpensive.

Q3: Join (build: 147k tuples / probe: 3.2m tuples)

Q9: Join (build: 320k tuples / probe: 1.5M tuples)

Q18: High-cardinality aggregation (1.5m groups)

48

TPC-H ANALYZED: HIDDEN MESSAGES AND LESSONS LEARNED
FROM AN INFLUENTIAL BENCHMARK
TPCTC 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1007/978-3-319-04936-6_5

15-721 (Spring 2024)

TPC-H WORKLOAD

Q1: Fixed-point arithmetic, 4-group aggregation

Q6: Selective filters. Computationally inexpensive.

Q3: Join (build: 147k tuples / probe: 3.2m tuples)

Q9: Join (build: 320k tuples / probe: 1.5M tuples)

Q18: High-cardinality aggregation (1.5m groups)

48

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1007/978-3-319-04936-6_5
https://github.com/cmu-db/benchbase/tree/main/src/main/java/com/oltpbenchmark/benchmarks/tpch/procedures

15-721 (Spring 2024)

SINGLE-THREADED PERFORMANCE

49

Source: Timo Kersten

85

15

45

111

152

49

16

48

147

99

0

50

100

150

Q1 Q6 Q3 Q9 Q18

R
un

ti
m

e
(m

s)

Tectorwise Typer

Intel Core i9-7900X (10 cores × 2HT)
TPC-H Queries (Scalefactor=1)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.in.tum.de/~kersten/index.shtml?lang=en

15-721 (Spring 2024)

SINGLE-THREADED PERFORMANCE

49

85

15

45

111

152

49

16

48

147

99

0

50

100

150

Q1 Q6 Q3 Q9 Q18

R
un

ti
m

e
(m

s)

Tectorwise Typer

Intel Core i9-7900X (10 cores × 2HT)
TPC-H Queries (Scalefactor=1)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.in.tum.de/~kersten/index.shtml?lang=en

15-721 (Spring 2024)

SINGLE-THREADED PERFORMANCE

Runtime Cycles IPC Instr. L1 Miss LLC Miss Br. Miss

TWise 85 59 2.8 162 2.0 0.57 0.03

Typer 48 34 2.0 68 0.6 0.57 0.01

TWise 15 11 1.4 15 0.2 0.29 0.01

Typer 16 11 1.8 20 0.3 0.35 0.06

TWise 45 24 1.8 42 0.9 0.16 0.08

Typer 48 25 0.8 21 0.5 0.16 0.27

TWise 111 56 1.3 76 2.1 0.47 0.39

Typer 147 74 0.6 42 1.7 0.46 0.34

TWise 152 48 2.1 102 1.9 0.18 0.37

Typer 99 30 1.6 46 0.8 0.19 0.16

Q1

Q6

Q3

Q9

Q18

50

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

MAIN FINDINGS

Both models are efficient and achieve roughly the
same performance.
→ 100x faster than row-oriented DBMSs!

Data-centric is better for "calculation-heavy"
queries with few cache misses.

Vectorization is slightly better at hiding cache miss
latencies.

51

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PARTING THOUGHTS

Query compilation makes a difference but is non-
trivial to implement.

The 2016 version of SingleStore is the best query
compilation implementation out there in terms of
performance and engineering…
→ Umbra FlyingStart is ridiculously good but that's because

the Germans are ridiculously good.

Newer systems choose to implement Vectorwise-
style vectorization instead of compilation.

52

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

NEXT CLASS

Query Task Scheduling! More Germans!

53

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

	Introduction
	Slide 1: Query Compilation & Code Generation
	Slide 2: LAST CLASS
	Slide 3: OPTIMIZATION GOALS
	Slide 4: MICROSOFT REMARK
	Slide 5: TODAY’S AGENDA

	Background
	Slide 6: OBSERVATION
	Slide 7: QUERY INTERPRETATION
	Slide 8: QUERY INTERPRETATION
	Slide 9: EXPRESSION EVALUATION
	Slide 10: EXPRESSION EVALUATION
	Slide 11: EXPRESSION EVALUATION
	Slide 12: EXPRESSION EVALUATION
	Slide 13: EXPRESSION EVALUATION
	Slide 14: EXPRESSION EVALUATION
	Slide 15: EXPRESSION EVALUATION

	Specialization
	Slide 16: CODE SPECIALIZATION
	Slide 17: CODE SPECIALIZATION BENEFITS
	Slide 18: CODE SPECIALIZATION METHODS

	Hique
	Slide 19: HIQUE: HOLISTIC CODE GENERATION
	Slide 20: HIQUE: OPERATOR TEMPLATES
	Slide 21: HIQUE: OPERATOR TEMPLATES
	Slide 22: HIQUE: OPERATOR TEMPLATES
	Slide 23: HIQUE: OPERATOR TEMPLATES
	Slide 24: HIQUE: DBMS INTEGRATION
	Slide 25: HIQUE: EVALUATION
	Slide 26: QUERY COMPILATION EVALUATION
	Slide 27: QUERY COMPILATION COST

	HyPer
	Slide 28: OBSERVATION
	Slide 29: HYPER: JIT QUERY COMPILATION
	Slide 30: PIPELINED OPERATORS
	Slide 31: PUSH-BASED EXECUTION
	Slide 32: PUSH-BASED EXECUTION
	Slide 33: QUERY COMPILATION EVALUATION
	Slide 34: QUERY COMPILATION COST

	HyPer Adaptive
	Slide 35: OBSERVATION
	Slide 36: HYPER: ADAPTIVE EXECUTION
	Slide 37: HYPER: ADAPTIVE EXECUTION
	Slide 38: HYPER: ADAPTIVE EXECUTION

	Implementations
	Slide 39: REAL-WORLD IMPLEMENTATIONS
	Slide 40: IBM SYSTEM R
	Slide 41: IBM SYSTEM R
	Slide 42: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 43: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 44: AMAZON REDSHIFT
	Slide 45: ORACLE
	Slide 46: MICROSOFT HEKATON
	Slide 47: SQLITE
	Slide 48: TUM UMBRA
	Slide 49: TUM UMBRA
	Slide 50: JAVA DATABASES
	Slide 51: APACHE SPARK
	Slide 52: QUESTDB
	Slide 53: SINGLESTORE (PRE–2016)
	Slide 54: SINGLESTORE (2016–PRESENT)
	Slide 55: POSTGRESQL
	Slide 56: POSTGRESQL
	Slide 57: VITESSEDB
	Slide 58: CMU NOISEPAGE (2019)
	Slide 59: CMU NOISEPAGE (2019)
	Slide 60: CMU NOISEPAGE (2019)

	Vectorization vs. Compilation
	Slide 61: VECTORIZATION VS. COMPILATION
	Slide 62: IMPLEMENTATIONS
	Slide 63: TPC-H WORKLOAD
	Slide 64: TPC-H WORKLOAD
	Slide 65: SINGLE-THREADED PERFORMANCE
	Slide 66: SINGLE-THREADED PERFORMANCE
	Slide 67: SINGLE-THREADED PERFORMANCE
	Slide 68: MAIN FINDINGS

	Conclusion
	Slide 69: PARTING THOUGHTS
	Slide 70: NEXT CLASS

