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LAST CLASS

How to use SIMD to vectorize core database 
algorithms for sequential scans.
→ Intra-query parallelism

The research literature in the 2010s can give the 
impression that vectorization and JIT compilation 
are mutually exclusive.
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OPTIMIZATION GOALS

Approach #1: Reduce Instruction Count
→ Use fewer instructions to do the same amount of work.

Approach #2: Reduce Cycles per Instruction
→ Execute more CPU instructions in fewer cycles.

Approach #3: Parallelize Execution
→ Use multiple threads to compute each query in parallel.
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MICROSOFT REMARK

After minimizing the disk I/O during query 
execution, the only way to increase throughput is to 
reduce the number of instructions executed.
→ To go 10x faster, the DBMS must execute 90% fewer 

instructions.
→ To go 100x faster, the DBMS must execute 99% fewer 

instructions.
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COMPILATION IN THE MICROSOFT SQL SERVER 
HEKATON ENGINE
IEEE DATA ENGINEERING BULLETIN 2011
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TODAY’S AGENDA

Background

Source-to-Source Compilation / Transpilation

JIT Compilation

Real-world Implementations

Project Status Discussion
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OBSERVATION

One way to achieve a significant reduction in 
instructions is through code specialization.

This means generating code that is specific to a task 
in the DBMS (e.g., one query).

Most code is written to make it easy for humans to 
understand rather than performance…
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QUERY INTERPRETATION

7

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id, COUNT(*)

σB.val=?+1

B C

SELECT *
  FROM A, C, 
   (SELECT B.id, COUNT(*)
      FROM B
     WHERE B.val = ? + 1
     GROUP BY B.id) AS B
  WHERE A.val = 123 
    AND A.id = C.a_id
    AND B.id = C.b_id
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QUERY INTERPRETATION

7

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id, COUNT(*)

σB.val=?+1

B C

⨝
for t1 in left.next():
  buildHashTable(t1)
for t2 in right.next():
  if probe(t2): emit(t1⨝t2)

for t in child.next():
  if evalPred(t): emit(t)σ ⨝

for t1 in left.next():
  buildHashTable(t1)
for t2 in right.next():
  if probe(t2): emit(t1⨝t2)

for t in A:
  emit(t)A

for t in B:
  emit(t)B for t in C:

  emit(t)C

for t in child.next():
  if evalPred(t): emit(t)σ

Γ
for t in child.next():
  buildAggregateTable(t)
for t in aggregateTable:
  emit(t)

SELECT *
  FROM A, C, 
   (SELECT B.id, COUNT(*)
      FROM B
     WHERE B.val = ? + 1
     GROUP BY B.id) AS B
  WHERE A.val = 123 
    AND A.id = C.a_id
    AND B.id = C.b_id
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Execution Context

EXPRESSION EVALUATION

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

Attribute(S.val)

Constant(1)

Op(=)

Op(+)

Parameter($1)
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   (SELECT B.id, COUNT(*)
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     GROUP BY B.id) AS B
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    AND A.id = C.a_id
    AND B.id = C.b_id
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1000

999 1

true

1000

Execution Context

EXPRESSION EVALUATION

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

Attribute(S.val)

Constant(1)

Op(=)

Op(+)

Parameter($1)

15

SELECT *
  FROM A, C, 
   (SELECT B.id, COUNT(*)
      FROM B
     WHERE B.val = ? + 1
     GROUP BY B.id) AS B
  WHERE A.val = 123 
    AND A.id = C.a_id
    AND B.id = C.b_id

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

CODE SPECIALIZATION

The DBMS generates code for any CPU-intensive 
task that has a similar execution pattern on different 
inputs. 
→ Access Methods
→ Stored Procedures
→ Query Operator Execution
→ Predicate Evaluation
→ Logging Operations

For query-focused compilation, the DBMS 
(typically) specializes it after generating the physical 
plan for a query.

9
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CODE SPECIALIZATION BENEFITS

Attribute types are known a priori.
→ Data access function calls can be converted to inline 

pointer casting.

Predicates are known a priori.
→ They can be evaluated using primitive data comparisons.

No function calls in loops
→ Allows the compiler to efficiently distribute data to 

registers and increase cache reuse.
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CODE SPECIALIZATION METHODS

Approach #1: Transpilation
→ Write code that converts a relational query plan into 

imperative language source code and then run it through a 
conventional compiler to generate native code.

Approach #2: JIT Compilation
→ Generate an intermediate representation (IR) of the query 

that the DBMS then compiles into native code .
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HIQUE: HOLISTIC CODE GENERATION

For a given query plan, create a C/C++ program 
that implements that query’s execution.
→ Bake in all the predicates and type conversions.

Use an off-shelf compiler to convert the code into a 
shared object, link it to the DBMS process, and then 
invoke the exec function.
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GENERATING CODE FOR HOLISTIC 
QUERY EVALUATION
ICDE 2010

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://doi.ieeecomputersociety.org/10.1109/ICDE.2010.5447892
https://doi.ieeecomputersociety.org/10.1109/ICDE.2010.5447892
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Interpreted Plan

HIQUE: OPERATOR TEMPLATES

13

for t in range(table.num_tuples):
  tuple = get_tuple(table, t)
  if eval(predicate, tuple, params):
    emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.
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Interpreted Plan

HIQUE: OPERATOR TEMPLATES

13

for t in range(table.num_tuples):
  tuple = get_tuple(table, t)
  if eval(predicate, tuple, params):
    emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.
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Templated PlanInterpreted Plan

HIQUE: OPERATOR TEMPLATES

13

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
    tuple = table.data + t ∗ tuple_size
    val = (tuple+predicate_offset)
    if (val == parameter_value + 1):
      emit(tuple)

for t in range(table.num_tuples):
  tuple = get_tuple(table, t)
  if eval(predicate, tuple, params):
    emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.
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Templated PlanInterpreted Plan
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HIQUE: DBMS INTEGRATION

The generated query code can invoke any other 
function in the DBMS. This allows it to use all the 
same components as interpreted queries.
→ Network Handlers
→ Buffer Pool Manager
→ Concurrency Control
→ Logging / Checkpoints
→ Indexes

Debugging is (relatively) easy because you step 
through the generated source code.
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HIQUE: EVALUATION

Generic Iterators
→ Canonical model with generic predicate evaluation.

Optimized Iterators
→ Type-specific iterators with inline predicates.

Generic Hardcoded
→ Handwritten code with generic iterators/predicates.

Optimized Hardcoded
→ Direct tuple access with pointer arithmetic.

HIQUE
→ Query-specific specialized code.

15
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QUERY COMPILATION EVALUATION
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QUERY COMPILATION COST
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OBSERVATION

Relational operators are a useful way to reason 
about a query but are not the most efficient way to 
execute it.

It takes a (relatively) long time to compile a C/C++ 
source file into executable code.

HIQUE also does not support for full pipelining.

18
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HYPER: JIT QUERY COMPILATION

Compile queries in-memory into native code using 
the LLVM toolkit.
→ Instead of emitting C++ code, HyPer emits LLVM IR.

Aggressive operator fusion within pipelines to keep 
a tuple in CPU registers for as long as possible.
→ Push-based vs. Pull-based
→ Data Centric vs. Operator Centric

19

EFFICIENTLY COMPILING EFFICIENT QUERY PLANS 
FOR MODERN HARDWARE
VLDB 2011

https://db.cs.cmu.edu/
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PIPELINED OPERATORS

20

⨝A.id=C.a_id

σ A.val=123

A

⨝B.id=C.b_id

ΓB.id,COUNT(*)

σB.val=?+1

B C

Pipeline Boundaries #1

#4

#2

#3

SELECT *
  FROM A, C, 
   (SELECT B.id, COUNT(*)
      FROM B
     WHERE B.val = ? + 1
     GROUP BY B.id) AS B
  WHERE A.val = 123 
    AND A.id = C.a_id
    AND B.id = C.b_id

https://db.cs.cmu.edu/
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PUSH-BASED EXECUTION

21

Generated Query PlanSELECT *
  FROM A, C, 
   (SELECT B.id, COUNT(*)
      FROM B
     WHERE B.val = ? + 1
     GROUP BY B.id) AS B
  WHERE A.val = 123 
    AND A.id = C.a_id
    AND B.id = C.b_id

for t in A:
  if t.val == 123:
    Materialize t in HashTable ⨝(A.id=C.a_id)

for t in B:
  if t.val == <param> + 1:
    Aggregate t in HashTable Γ(B.id)

for t in Γ(B.id):
  Materialize t in HashTable ⨝(B.id=C.b_id)
  
for t3 in C:
  for t2 in ⨝(B.id=C.b_id):
    for t1 in ⨝(A.id=C.a_id):
      emit(t1⨝t2⨝t3)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
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PUSH-BASED EXECUTION

21

Generated Query Plan
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#4

#2

#3

SELECT *
  FROM A, C, 
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     WHERE B.val = ? + 1
     GROUP BY B.id) AS B
  WHERE A.val = 123 
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    AND B.id = C.b_id
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  if t.val == 123:
    Materialize t in HashTable ⨝(A.id=C.a_id)

for t in B:
  if t.val == <param> + 1:
    Aggregate t in HashTable Γ(B.id)

for t in Γ(B.id):
  Materialize t in HashTable ⨝(B.id=C.b_id)
  
for t3 in C:
  for t2 in ⨝(B.id=C.b_id):
    for t1 in ⨝(A.id=C.a_id):
      emit(t1⨝t2⨝t3)
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QUERY COMPILATION EVALUATION
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QUERY COMPILATION COST
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OBSERVATION

HyPer's query compilation time grows super-
linearly relative to the query size.
→ # of joins
→ # of predicates
→ # of aggregations

Not a big issue with OLTP applications.

Major problem with OLAP workloads.
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HYPER: ADAPTIVE EXECUTION

Generate LLVM IR for the query and immediately 
start executing the IR using an interpreter.

Then the DBMS compiles the query in the 
background.

When the compiled query is ready, seamlessly 
replace the interpretive execution.
→ For each morsel, check to see whether the compiled 

version is available.

25

ADAPTIVE EXECUTION OF COMPILED QUERIES
ICDE 2018

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/kohn-icde2018.pdf
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HYPER: ADAPTIVE EXECUTION
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HYPER: ADAPTIVE EXECUTION
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REAL-WORLD IMPLEMENTATIONS
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JVM-based
Spark

Neo4j

Splice Machine 

Presto / Trino

OrientDB

Tajo 

Derby

LLVM-based
SingleStore

VitesseDB

PostgreSQL (2018)

CMU Peloton 

CMU NoisePage 

TUM LingoDB

Custom
IBM System R 

Actian Vector

Microsoft Hekaton

SQLite

TUM HyPer

TUM Umbra

QuestDB

Transpilation
Amazon Redshift

Oracle

MemSQL (2016)
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IBM SYSTEM R

A primitive form of code generation and query 
compilation was used by IBM in 1970s.
→ Compiled SQL statements into assembly code by selecting 

code templates for each operator.

Technique was abandoned when IBM built SQL/DS 
and DB2 in the 1980s:
→ High cost of external function calls
→ Poor portability
→ Software engineer complications

29
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IBM SYSTEM R

A primitive form of code generation and query 
compilation was used by IBM in 1970s.
→ Compiled SQL statements into assembly code by selecting 

code templates for each operator.

Technique was abandoned when IBM built SQL/DS 
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A HISTORY AND EVALUATION OF SYSTEM R
COMMUNICATIONS OF THE ACM 1981
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VECTORWISE: PRECOMPILED PRIMITIVES

Pre-compiles thousands of "primitives" that 
perform basic operations on typed data.
→ Using simple kernels for each primitive means that they 

are easier to vectorize.

The DBMS then executes a query plan that invokes 
these primitives at runtime.
→ Function calls are amortized over multiple tuples.
→ The output of a primitive are the offsets of tuples that 
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https://db.cs.cmu.edu/
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VECTORWISE: PRECOMPILED PRIMITIVES

31

SELECT * FROM foo
WHERE str_col = 'abc'
  AND int_col = 4;

foo

str_col='abc' &&
int_col=4s

vec<offset> sel_eq_str(vec<string> col, string val) {
  vec<offset> res;   
  for (offset i = 0; i < col.size(); i++)
    if (col[i] == val) res.append(i);
  return (res);
}

vec<offset> sel_eq_int(vec<int> col, int val,
                       vec<offset> positions) {
  vec<offset> res;   
  for (offset i : positions)
    if (col[i] == val) res.append(i);
  return (res);
}

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
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AMAZON REDSHIFT

Convert query fragments into templated C++ code.
→ Push-based execution with vectorization.

DBMS checks whether there are already exists a 
compiled version of each templated fragment in the 
customer's local cache.

If fragment does not exist in the local cache, then it 
checks a global cache for the entire fleet of Redshift 
customers.
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AMAZON REDSHIFT RE-INVENTED
SIGMOD 2022

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/10.1145/3514221.3526045
https://dl.acm.org/doi/10.1145/3514221.3526045
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ORACLE

Convert PL/SQL stored procedures into Pro*C
code and then compiled into native C/C++ code.

They also put Oracle-specific operations directly in 
the SPARC chips as co-processors.
→ Memory Scans
→ Bit-pattern Dictionary Compression
→ Vectorized instructions designed for DBMSs
→ Security/encryption

33

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
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MICROSOFT HEKATON

Can compile both procedures and SQL.
→ Non-Hekaton queries can access Hekaton tables through 

compiled inter-operators.

Generates C code from an imperative syntax tree, 
compiles it into DLL, and links at runtime.

Employs safety measures to prevent somebody from 
injecting malicious code in a query.

34

COMPILATION IN THE MICROSOFT SQL SERVER 
HEKATON ENGINE
IEEE DATA ENGINEERING BULLETIN 2011

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://sites.computer.org/debull/A14mar/p22.pdf
http://sites.computer.org/debull/A14mar/p22.pdf
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SQLITE

DBMS converts a query plan into opcodes, and then 
executes them in a custom VM (bytecode engine).
→ Also known as "Virtual DataBase Engine" (VDBE)
→ Opcode specification can change across versions.

SQLite's VM ensures that queries execute the same 
in any possible environment.

35

Source: Richard Hipp

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.sqlite.org/opcode.html
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TUM UMBRA

Instead of implementing a separate 
bytecode interpreter, Umbra's 
"FlyingStart" adaptive execution 
framework generates custom IR that 
maps to x86 assembly in a single pass.
→ Manually performs dead code elimination.
→ The DBMS is a basically compiler.

They also wrote their own debugger!
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TUM UMBRA

Instead of implementing a separate 
bytecode interpreter, Umbra's 
"FlyingStart" adaptive execution 
framework generates custom IR that 
maps to x86 assembly in a single pass.
→ Manually performs dead code elimination.
→ The DBMS is a basically compiler.

They also wrote their own debugger!
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TIDY TUPLES AND FLYING START: FAST COMPILATION AND 
FAST EXECUTION OF RELATIONAL QUERIES IN UMBRA
VLDB JOURNAL 2021

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/10.1007/s00778-020-00643-4
https://dl.acm.org/doi/10.1007/s00778-020-00643-4
https://dl.acm.org/doi/10.1145/3395032.3395321
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JAVA DATABASES

There are several JVM-based DBMSs that contain 
custom code that emits JVM bytecode directly.
→ Spark
→ Neo4j
→ Splice Machine
→ Presto / Trino
→ Derby
→ Tajo

This functionally the same as generating LLVM IR.
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https://db.cs.cmu.edu/
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APACHE SPARK

Introduced in the new Tungsten engine in 2015.

The system converts a query's WHERE clause 
expression trees into Scala ASTs.

It then compiles these ASTs to generate JVM 
bytecode, which is then executed natively.

Databricks abandoned this approach with their new 
Photon engine in late 2010s.

38

SPARK SQL: RELATIONAL DATA PROCESSING IN SPARK
SIGMOD 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/citation.cfm?id=2742797
https://dl.acm.org/citation.cfm?id=2742797
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QUESTDB

Java-based time-series columnar DBMS. 

The Java front-end converts WHERE clause 
predicates into IR and then uses a C++ backend to 
compile the IR into vectorized machine code using 
asmjit.
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SINGLESTORE (PRE–2016)

Performs the same C/C++ code generation as 
HIQUE and then invokes gcc.

Converts all queries into a parameterized form and 
caches the compiled query plan.

40

SELECT * FROM A 
 WHERE A.id = ?

SELECT * FROM A 
 WHERE A.id = 123

SELECT * FROM A 
 WHERE A.id = 456

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
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SINGLESTORE (2016–PRESENT)

A query plan is converted into an imperative plan 
expressed in a high-level imperative DSL.
→ MemSQL Programming Language (MPL)
→ Think of this as a C++ dialect.

DBMS then converts DSL into custom opcodes.
→ MemSQL Bit Code (MBC)
→ Think of this as JVM byte code.

Lastly, the DBMS compiles the opcodes into LLVM 
IR and then to native code.
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Source: Drew Paroski 

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://docs.singlestore.com/managed-service/en/query-data/code-generation.html
http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html
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POSTGRESQL

Added support in 2018 (v11) for JIT compilation of 
predicates and tuple deserialization with LLVM.
→ Relies on optimizer estimates to determine when to 

compile expressions.

Automatically compiles Postgres' back-end C code 
into LLVM C++ code to remove iterator calls.
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Source: Dmitry Melnik

https://db.cs.cmu.edu/
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VITESSEDB

Query accelerator for Postgres/Greenplum that uses 
LLVM + intra-query parallelism.
→ JIT predicates
→ Push-based processing model
→ Indirect calls become direct or inlined.
→ Leverages hardware for overflow detection.

Does not support all of Postgres’ types and 
functionalities. All DML operations are still 
interpreted.
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Source: CK Tan

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=PEmVuYjhQFo
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CMU NOISEPAGE (2019)

SingleStore-style conversion of query plans into a 
database-oriented DSL.

Then compile the DSL into opcodes.

HyPer-style interpretation of opcodes while 
compilation occurs in the background with LLVM.
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CMU NOISEPAGE (2019)

45

fun main() -> int {
  var ret = 0
  for (row in foo) {   
    if (row.colA >= 50 and
        row.colB < 100000) {      
      ret = ret + 1
    }
  }
  return ret
}

Source: Prashanth Menon

SELECT * FROM foo
 WHERE colA >= 50
   AND colB < 100000;

Function 0 <main>:                                                                                                           
[3/4587]
  Frame size 8512 bytes (1 parameter, 20 locals)                                                                               
    param    hiddenRv:  offset=0       size=8       align=8       type=*int32
    local         ret:  offset=8       size=4       align=4       type=int32
    local  table_iter:  offset=16      size=8312    align=8       type=tpl::sql::TableVectorIterator
    local         vpi:  offset=8328    size=8       align=8       type=*tpl::sql::VectorProjectionIterator
    local        tmp1:  offset=8336    size=1       align=1       type=bool
    local         row:  offset=8344    size=64      align=8       type=struct{Integer,Integer,Integer,Integer}
    local        tmp2:  offset=8408    size=1       align=1       type=bool
    local        tmp3:  offset=8416    size=8       align=8       type=*Integer
    local        tmp4:  offset=8424    size=8       align=8       type=*Integer
    local        tmp5:  offset=8432    size=8       align=8       type=*Integer
    local        tmp6:  offset=8440    size=8       align=8       type=*Integer
    local        tmp7:  offset=8448    size=1       align=1       type=bool
    local        tmp8:  offset=8449    size=2       align=1       type=Boolean
    local        tmp9:  offset=8456    size=16      align=8       type=Integer
    local       tmp10:  offset=8472    size=4       align=4       type=int32
    local       tmp11:  offset=8476    size=2       align=1       type=Boolean
    local       tmp12:  offset=8480    size=8       align=8       type=*Integer
    local       tmp13:  offset=8488    size=16      align=8       type=Integer
    local       tmp14:  offset=8504    size=4       align=4       type=int32
    local       tmp15:  offset=8508    size=4       align=4       type=int32

  0x00000000    AssignImm4
  0x0000000c    TableVectorIteratorInit
  0x00000016    TableVectorIteratorGetVPI
  0x00000022    TableVectorIteratorNext
  0x0000002e    JumpIfFalse
  0x0000003a    VPIHasNext
  0x00000046    JumpIfFalse
  0x00000052    Lea
  0x00000062    VPIGetInteger
  0x00000072    Lea
  0x00000082    VPIGetInteger
  0x00000092    Lea
  0x000000a2    VPIGetInteger
  0x000000b2    Lea
  0x000000c2    VPIGetInteger
  0x000000d2    AssignImm4
  0x000000de    InitInteger
  0x000000ea    GreaterThanEqualInteger
  0x000000fa    ForceBoolTruth
  0x00000106    JumpIfFalse
  0x00000112    Lea

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=HjMQbzBhTb4
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CMU NOISEPAGE (2019)
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fun main() -> int {
  var ret = 0
  for (row in foo) {   
    if (row.colA >= 50 and
        row.colB < 100000) {      
      ret = ret + 1
    }
  }
  return ret
}

Source: Prashanth Menon

SELECT * FROM foo
 WHERE colA >= 50
   AND colB < 100000;

Interpreter

Optimized 
LLVM Compiler

x86 Code

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=HjMQbzBhTb4


15-721 (Spring 2024)

VECTORIZATION VS. COMPILATION

Test-bed system to analyze the trade-offs between 
vectorized execution and query compilation.

Implemented high-level algorithms the same in 
each system but varied the implementation details 
based on system architecture.
→ Example: Hash join algorithm is the same, but the systems 

use different hash functions (Murmur2 vs. CRC32×2)
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EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT COMPILED 
AND VECTORIZED QUERIES BUT WERE AFRAID TO ASK
VLDB 2018

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3275366.3284966
https://dl.acm.org/doi/abs/10.14778/3275366.3284966
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IMPLEMENTATIONS

Approach #1: Tectorwise
→ Break operations into pre-compiled primitives.
→ Must materialize the output of primitives at each step. 

Approach #2: Typer
→ Push-based processing model with JIT compilation.
→ Process a single tuple up entire pipeline without 

materializing the intermediate results.

47
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TPC-H WORKLOAD

Q1: Fixed-point arithmetic, 4-group aggregation

Q6: Selective filters. Computationally inexpensive.

Q3: Join (build: 147k tuples / probe: 3.2m tuples)

Q9: Join (build: 320k tuples / probe: 1.5M tuples)

Q18: High-cardinality aggregation (1.5m groups)

48

TPC-H ANALYZED: HIDDEN MESSAGES AND LESSONS LEARNED 
FROM AN INFLUENTIAL BENCHMARK
TPCTC 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1007/978-3-319-04936-6_5
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SINGLE-THREADED PERFORMANCE

49

Source: Timo Kersten 
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SINGLE-THREADED PERFORMANCE

Runtime Cycles IPC Instr. L1 Miss LLC Miss Br. Miss

TWise 85 59 2.8 162 2.0 0.57 0.03

Typer 48 34 2.0 68 0.6 0.57 0.01

TWise 15 11 1.4 15 0.2 0.29 0.01

Typer 16 11 1.8 20 0.3 0.35 0.06

TWise 45 24 1.8 42 0.9 0.16 0.08

Typer 48 25 0.8 21 0.5 0.16 0.27

TWise 111 56 1.3 76 2.1 0.47 0.39

Typer 147 74 0.6 42 1.7 0.46 0.34

TWise 152 48 2.1 102 1.9 0.18 0.37

Typer 99 30 1.6 46 0.8 0.19 0.16

Q1

Q6

Q3

Q9

Q18
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MAIN FINDINGS

Both models are efficient and achieve roughly the 
same performance.
→ 100x faster than row-oriented DBMSs!

Data-centric is better for "calculation-heavy" 
queries with few cache misses.

Vectorization is slightly better at hiding cache miss 
latencies.

51
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PARTING THOUGHTS

Query compilation makes a difference but is non-
trivial to implement.

The 2016 version of SingleStore is the best query 
compilation implementation out there in terms of 
performance and engineering…
→ Umbra FlyingStart is ridiculously good but that's because 

the Germans are ridiculously good.

Newer systems choose to implement Vectorwise-
style vectorization instead of compilation.

52
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NEXT CLASS

Query Task Scheduling! More Germans!

53

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

	Introduction
	Slide 1: Query Compilation & Code Generation
	Slide 2: LAST CLASS
	Slide 3: OPTIMIZATION GOALS
	Slide 4: MICROSOFT REMARK
	Slide 5: TODAY’S AGENDA

	Background
	Slide 6: OBSERVATION
	Slide 7: QUERY INTERPRETATION
	Slide 8: QUERY INTERPRETATION
	Slide 9: EXPRESSION EVALUATION
	Slide 10: EXPRESSION EVALUATION
	Slide 11: EXPRESSION EVALUATION
	Slide 12: EXPRESSION EVALUATION
	Slide 13: EXPRESSION EVALUATION
	Slide 14: EXPRESSION EVALUATION
	Slide 15: EXPRESSION EVALUATION

	Specialization
	Slide 16: CODE SPECIALIZATION
	Slide 17: CODE SPECIALIZATION BENEFITS
	Slide 18: CODE SPECIALIZATION METHODS

	Hique
	Slide 19: HIQUE: HOLISTIC CODE GENERATION
	Slide 20: HIQUE: OPERATOR TEMPLATES
	Slide 21: HIQUE: OPERATOR TEMPLATES
	Slide 22: HIQUE: OPERATOR TEMPLATES
	Slide 23: HIQUE: OPERATOR TEMPLATES
	Slide 24: HIQUE: DBMS INTEGRATION
	Slide 25: HIQUE: EVALUATION
	Slide 26: QUERY COMPILATION EVALUATION
	Slide 27: QUERY COMPILATION COST

	HyPer
	Slide 28: OBSERVATION
	Slide 29: HYPER: JIT QUERY COMPILATION
	Slide 30: PIPELINED OPERATORS
	Slide 31: PUSH-BASED EXECUTION
	Slide 32: PUSH-BASED EXECUTION
	Slide 33: QUERY COMPILATION EVALUATION
	Slide 34: QUERY COMPILATION COST

	HyPer Adaptive
	Slide 35: OBSERVATION
	Slide 36: HYPER: ADAPTIVE EXECUTION
	Slide 37: HYPER: ADAPTIVE EXECUTION
	Slide 38: HYPER: ADAPTIVE EXECUTION

	Implementations
	Slide 39: REAL-WORLD IMPLEMENTATIONS
	Slide 40: IBM SYSTEM R
	Slide 41: IBM SYSTEM R
	Slide 42: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 43: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 44: AMAZON REDSHIFT
	Slide 45: ORACLE
	Slide 46: MICROSOFT HEKATON
	Slide 47: SQLITE
	Slide 48: TUM UMBRA
	Slide 49: TUM UMBRA
	Slide 50: JAVA DATABASES
	Slide 51: APACHE SPARK
	Slide 52: QUESTDB
	Slide 53: SINGLESTORE (PRE–2016)
	Slide 54: SINGLESTORE (2016–PRESENT)
	Slide 55: POSTGRESQL
	Slide 56: POSTGRESQL
	Slide 57: VITESSEDB
	Slide 58: CMU NOISEPAGE (2019)
	Slide 59: CMU NOISEPAGE (2019)
	Slide 60: CMU NOISEPAGE (2019)

	Vectorization vs. Compilation
	Slide 61: VECTORIZATION VS. COMPILATION
	Slide 62: IMPLEMENTATIONS
	Slide 63: TPC-H WORKLOAD
	Slide 64: TPC-H WORKLOAD
	Slide 65: SINGLE-THREADED PERFORMANCE
	Slide 66: SINGLE-THREADED PERFORMANCE
	Slide 67: SINGLE-THREADED PERFORMANCE
	Slide 68: MAIN FINDINGS

	Conclusion
	Slide 69: PARTING THOUGHTS
	Slide 70: NEXT CLASS


