ADVANCED (@ o

DATABASE o g
SYSTEMS \ump o

User-
Defined
Functions

cMU 15-721 Mellon
Spring 2024 University

1 1 Andy Pavlo Carnegie

https://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/
https://db.cs.cmu.edu/

£=CMU-DB

15-721 (Spring 2024)

LAST CLASS

We covered two category of join algorithms for
modern OLAP DBMSs.

Hash Joins: Every DBMS does this now

Worst-case Optimal Joins: Every DBMS will
need to do something like this in the future.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

EMBEDDED DATABASE LOGIC

Moving application logic into the DBMS can

(potentially) provide several benefits:

— Fewer network round-trips (better efficiency).

— Immediate notification of changes.

— DBMS spends less time waiting during transactions.
— Developers do not have to reimplement functionality.
— Extend the functionality of the DBMS.

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

EMBEDDED DATABASE LOGIC

7%

I User-Defined Functions (UDFs) I
Stored Procedures

Triggers
User-Defined Types (UDTs) 69%

User-Defined Aggregates (UDAs)

Triggers [l UDFs
B Stored Procedures

PROCEDURAL EXTENSIONS OF SQL:
UNDERSTANDING THEIR USAGE IN THE WILD
VLDB 2021

£=CMU-DB
111111 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf
https://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf

$2CMU-DB

15-721 (Spring 2024)

USER-DEFINED FUNCTIONS

A user-defined function (UDF) is a function
written by the application developer that extends
the system's functionality beyond its built-in

operations.

— It takes in input arguments (scalars)
— Perform some computation

— Return a result (scalars, tables)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

USER-DEFINED FUNCTIONS

Application
execute(SOL) funcl(args):
<Progran Logic> [T\ exstesty
execute(SQL) return (result)

func2(args):
<Program Logic>
return (result)

|<Program Logic> |~\

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

USER-DEFINED FUNCTIONS

Application
SELECT * FROM xxx
L~ | WHERE val = func1(id)

execute(SQL) —
execute(SQL)

$CMU-DB
o

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

TODAY’S AGENDA

Background

UDF In-lining

UDF CTE Conversion
UDF Batching

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

UDF: SQL FUNCTIONS

A SQL-based UDF contains a list of queries that the

DBMS executes in order when invoked.
— The function returns the result of the last query executed.

CREATE FUNCTION |get_foo(int) |Input Args
RETURNS foo
LANGUAGE SQL AS $%
SELECT * FROM foo WHERE foo.1id = $1;
$$;

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

UDF: SQL FUNCTIONS

A SQL-based UDF contains a list of queries that the

DBMS executes in order when invoked.
— The function returns the result of the last query executed.

Return Args

CREATE FUNCTION get_foo(int)

RETURNS foo

LANGUAGE SQL AS $$%
SELECT * FROM foo WHERE foo.id = $1;

$$;

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

UDF: SQL FUNCTIONS

A SQL-based UDF contains a list of queries that the

DBMS executes in order when invoked.
— The function returns the result of the last query executed.

CREATE FUNCTION get_foo(int)
RETURNS foo

LANGUAGE SQL AS $$

SELECT * FROM foo WHERE foo.id = $1;| Fupnction Body
$$;

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

UDF: SQL FUNCTIONS

A SQL-based UDF contains a list of queries that the

DBMS executes in order when invoked.
— The function returns the result of the last query executed.

CREATE FUNCTION get_foo(int)

RETURNS foo

LANGUAGE SQL AS $%

SELECT * FROM foo WHERE foo.1id = $1;
$$;

SELECT get_foo(1); SELECT * FROM get_foo(1);

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

UDF: EXTERNAL PROGRAMMING LANGUAGE 1

Some DBMSs support writing UDFs in languages

other than SQL.

— SQL Standard: SQL/PSM

— Oracle/DB2: PL/SQL

— Postgres: PL/pgSQL

— DB2: SQL PL

— MSSQL/Sybase: Transact-SQL

Other systems support more common
programming languages:
— Sandbox vs. non-Sandbox

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/SQL/PSM
https://en.wikipedia.org/wiki/PL/SQL
https://en.wikipedia.org/wiki/PL/pgSQL
https://en.wikipedia.org/wiki/SQL_PL
https://en.wikipedia.org/wiki/Transact-SQL

UDF: EXTERNAL PROGRAMMING LANGUAGE

CREATE FUNCTION cust_level(@ckey int)w Get all the customer ids and

RETURNS char(10) AS compute their customer service
L [based on th f
DECLARE @total float; vel based on the amoune
DECLARE @level char(10); oney they have spent.

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';

ELSE

SET @level = 'Regular’; SELKCT c_custkey

RETURN @level; cust_level(c_custkey)
END FROM customer

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

$2CMU-DB

15-721 (Spring 2024)

UDF ADVANTAGES

They encourage modularity and code reuse
— Different queries can reuse the same application logic
without having to reimplement it each time.

Fewer network round-trips between application
server and DBMS for complex operations.

Some types of application logic are easier to express
and read as UDFs than SQL.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

UDF DISADVANTAGES (1)

Query optimizers treat external programming
language UDFs as black boxes.

— DBMS is unable to estimate the function's cost / selectivity
if it doesn't understand what the logic inside of it will do
when it runs.

— Example: WHERE val = my_udf(123)

[t is difficult to parallelize UDFs due to correlated

queries inside of them.

— Some DBMSs will only execute queries with a single thread
if they contain a UDF.

— Some UDFs incrementally construct queries.

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

UDF DISADVANTAGES (2)

Complex UDFs in SELECT / WHERE clauses force the

DBMS to execute iteratively.

— RBAR = "Row By Agonizing Row"

— Things get even worse if UDF invokes queries due to
implicit joins that the optimizer cannot "see".

Since the DBMS executes the commands in the
UDF one-by-one, it is unable to perform cross-
statement optimizations.

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

UDE DT (2)
TSQL Scalar functions are evil. .

I've been working with a number of clients recently who all have suffered at the hands of TSQL Scalar functions. Scalar functions were introduced
in 5QL 2000 as a means to wrap logic so we benefit from code reuse and simplify our queries. who would be daft enough not to think this was a

good idea. | for one jumped on this initially thinking it was a great thing to do. 1S eS fo rce the

However as you might have gathered from the Hitle scalar functions aren't the nice friend you may think they are.

If you are running queries across large tables then this may explain why you are getting poor performance.
In this post we will look at a simple padding function, we will be creating large volumes to emphasize the issue with scalar udfs.

create function Padieft(@val varchar(100), @len int, @char char(1)) e d
returns varchar(100)].eS ue tO
as 1
hegin

return right(replicate(@char,@len) + @val, @len)
end
go

Interpreted

s in the
Cross-

Scalar functions are interpreted code that means EVERY call to the function results in your code being interpreted. That means overhead for
processing your function is proportional to the number of rows.

Running this code you will see that the native system calls take considerable less time than the UDF calls. On my machine it takes 2614 ms for the
system calls and 38758ms for the UDF. Thats a 19x increase.

set statistics time on

go

select max(right(replicate('B‘,l@@) + o.name + c.name, 100))
from msdb.sys.columns o

cross join msdb.sys.columns €

select max(dbo.padLeft(o.name * c.name, 100,'@'))
from msdb.sys.columns 0
cross join msdb.sys.columns C

£=CMU-

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://sqlblogcasts.com/blogs/simons/archive/2008/11/03/TSQL-Scalar-functions-are-evil-.aspx

Q

=. Microsoft

Reviewers o€ Sac enzj €lro, Jos
Joe s k, D il Ribei Jos de Br T
€ Bruij

TSQL Scalar fun

I've been working with a number of clients recently who all have suffi
in 5QL 2000 as a means to wrap logic so we benefit from code reuse
good idea. | for one jumped on this initially thinking it was a great th

However as you might have gathered from the title scalar functions
If you are running queries across large tables then this may explain

In this post we will look at a simple padding function, we will be cr Many of us
are very familiar i
with the neqat
gative perform
ance jm

create function padLeft(@val varchar(100), @le here and here . Using UDFs in th
n thi

plications

returns varchar(100) implies. In additi S manner js . of usin
ition, scalar U an anti-patts g scalar UDF:
. . D ern mo. S on col ; X
as Native Co . F Usage also limits the oppir: st of us frown upon, pe olumns in queries: my coy
hegin mplled UDFs int OPtimizer to use serja p| . because of the row-by-agonizi ©agues have posted aboy j
Teturn right(replicate(@char,@len) + @val, roduced plans. Overall evil personifieqs - " (CAR) Processi ot issues
end Though the prop| ed! sing that this
go query. In em with scalar UDFs is el
some cases, jt :
may be '
UDF £asy to ref,
Interpreted acto

Scalar functions are interpreted code that means EVERY call to
processing your function is proportional to the number of row

Running this code you will see that the native system calls ta
system calls and 38758ms for the UDF. Thats a 19x increase.

set statistics time on
go

select max(right(replicate('B‘,l@@) + 0.0
from msdb.sys.columns o

cross join msdb.sys.columns €

select max(dbo. padLeft(o.name + c.name 1007 TT=ry with th
I} ' e trivi
from msdb.sys.columns 0 al UDF being refactored as 3 Ty
cross join msdb.sys.columns ¢ F versus the same ypp bei
< ——— Ing nativ -
= CMU- ely compiled (all timings are ;
in m””ﬁacands).

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://sqlblogcasts.com/blogs/simons/archive/2008/11/03/TSQL-Scalar-functions-are-evil-.aspx
https://techcommunity.microsoft.com/t5/datacat/soften-the-rbar-impact-with-native-compiled-udfs-in-sql-server/ba-p/305260?advanced=false&collapse_discussion=true&search_type=thread

UDF PERFORMANCE

Microsoft SQL Server

SELECT

FROM
WHERE
AND
AND
AND

GROUP
ORDER

1_shipmode,
SUM(CASE

WHEN o_orderpriority <> '1-URGENT'

THEN 1 ELSE 0 END
) AS low_line_count
orders, lineitem
o_orderkey = 1_orderkey
1_shipmode IN ('MAIL', 'SHIP')
1_commitdate < 1_receiptdate
1_shipdate < 1_commitdate

i >=_' -01-01"

dbo.cust_name(o_custkey)
BY 1_shipmode
BY 1_shipmode

TPC-H Q12 using a UDF (SF=1).
— Original Query: 0.8 sec
— Query + UDF: 13 hr 30 min

CREATE FUNCTION cust_name(@ckey int)
RETURNS char(25) AS
BEGIN
DECLARE @n char(25);
SELECT @n = c_name
FROM customer WHERE c_custkey = @ckey;
RETURN @n;

END

Source: Karthik Ramachandra

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.microsoft.com/en-us/research/people/karam/

UDF ACCELERATION

Approach #1: Compilation
— Compile interpreted UDF code into native machine code.

Approach #2: Parallelization

— Rely on user-defined annotations to determine which
portions of a UDF can be safely executed in parallel.

Approach #3: Inlining

— Convert UDF into declarative form and then inline it into
the calling query.

Approach #4: Batching

— Convert a UDF into corresponding SQL queries that
operate on multiple tuples at a time.

Source: Surabhi Gupta
£ CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf

FROID UDF INLINING

Automatically convert UDFs into relational algebra

expressions that are inlined as sub-queries.
— Does not require the app developer to change UDF code.

Perform conversion during the rewrite phase to

avoid having to change the cost-base optimizer.
— Commercial DBMSs already have powerful transformation
rules for executing sub-queries efficiently.

== |FROID: OPTIMIZATION OF IMPERATIVE PROGRAMS
IN A RELATIONAL DATABASE

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p432-ramachandra.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p432-ramachandra.pdf

$2CMU-DB

15-721 (Spring 2024)

SUB-QUERIES

The DBMS treats nested sub-queries in the where
clause as functions that take parameters and return
a single value or set of values.

Two Approaches:

— Rewrite to de-correlate and/or flatten them

— Decompose nested query and store result to temporary
table. Then the outer joins with the temporary table,

We will cover the German-style de-correlation for
sub-queries next week...

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

SUB-QUERIES: REWRITE

SELECT user_id FROM orders AS o1 Example: Retrieve the first
WHERE EXISTS(
SELECT COUNT(*) FROM orders AS o2 user that has made at least
WHERE o1.user_id = 02.user_id tVVO:PIUKjlaseS-

GROUP BY 02.user_id HAVING COUNT(x) >= 2

)
ORDER BY user_id ASC LIMIT 1;

¥

SELECT user_id FROM orders
GROUP BY user_id

HAVING COUNT(*) >= 2

ORDER BY user_id ASC LIMIT 1;

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

$2CMU-DB

15-721 (Spring 2024)

LATERAL JOIN

A lateral inner subquery can refer to fields in rows
of the table reference to determine which rows to

return.
— Allows you to have sub-queries in FROM clause.

The DBMS iterates through each row in the table
referenced and evaluates the inner sub-query for

each row.

— The rows returned by the inner sub-query are added to the
result of the join with the outer query.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

LATERAL JOIN: EXAMPLE

SELECT user_id, first_order, next_order, id
FROM (SELECT user_id,
MIN(created) AS first_order
FROM orders GROUP BY user_id) AS ol
INNER JOIN LATERAL

(SELECT id, created AS next_order
FROM orders
WHERE user_id = ol.user_id
AND created > ol.first_order
ORDER BY created ASC LIMIT 1) AS o2

ON true
LIMIT 1;

Source: Krzysztof Kempirski

$CMU-DB

15-721 (Spring 2024)

Example: Retrieve the first
user that has made at least
two purchases along with
the timestamps of the first
and next orders.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://medium.com/kkempin/postgresqls-lateral-join-bfd6bd0199df

LATERAL JOIN: EXAMPLE

Example: Retrieve the first
user that has made at least
MIN(created) AS fﬂrst_order<— t h 1 'tfl
FROM orders GROUP BY uder_id) AS o WO purchases along wi

INNER JOIN LATERAL the timestamps of the first
(SELECT id, created AS ndqxt_order d d
FROM orders and next orders.
WHERE user_id = ol.user_id
AND created > ol.first_order
ORDER BY created ASC LIMIT 1) AS o2
ON true
LIMIT 1;

SELECT user_id, first_order, next_order, id
FROM (SELECT user_id,<«

Source: Krzysztof Kempirski

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://medium.com/kkempin/postgresqls-lateral-join-bfd6bd0199df

FROID OVERVIEW

Step #1 — Transform Statements

Step #2 — Break UDF into Regions

Step #3 — Merge Expressions

Step #4 - Inline UDF Expression into Query

Step #5 — Run Updated Query through Optimizer

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

STEP #1: TRANSFORM STATEMENTS

Imperative Statements

SET @level = 'Regular'; »

SELECT @total = SUM(o_totalprice) »
FROM orders

WHERE o_custkey=@ckey;

IF (@total > 1000000) »
SET @level = 'Platinum';

Source: Karthik Ramachandra

$CMU-DB

15-721 (Spring 2024)

SQL Statements

SELECT 'Regular' AS level;

SELECT (
SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey
) AS total;

SELECT (
CASE WHEN total > 1000000
THEN 'Platinum'
ELSE NULL

END) AS level;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.microsoft.com/en-us/research/people/karam/

STEP #2: BREAK INTO REGIONS

{SELECT NULL AS level,
CREATE FUNCTION cust_level(@ckey int) (SELECT SUM(o_totalprice)
RETURNS char(10) AS FROM orders
BEGIN WHERE o_custkey=@ckey) AS total
€)[DECLARE @total float;) AS

DECLARE Q@level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum’;
ELSE

SET @level = 'Regular’;

RETURN @level;
END

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

STEP #2: BREAK INTO REGIONS

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN

Q DECLARE @total float;
DECLARE Q@level char(10);

SELECT @total = SUM(o_totalprice)

(SELECT NULL AS level,

(

SELECT SUM(o_totalprice)
FROM orders
WHERE o _custkey=@ckey) AS total

)

As]

FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum’;
ELSE

SET @level = 'Regular’;

RETURN @level;
END

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

STEP #2: BREAK INTO REGIONS

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN

Q DECLARE @total float;
DECLARE Q@level char(10);

SELECT @total = SUM(o_totalprice)

(SELECT NULL AS level e

(SELECT SUM(o_totalpri
FROM orders
WHERE o_custkey=@cke

) As F]

ce)

) AS total
A

FROM orders WHERE o_custkey=@ckey;

"

SET @level = 'Platinum';
ELSE
SET @level = 'Regular';

RETURN @level;
END

€)|1IF (etotal > 1000000) _/

(SELECT (

THEN 'Platingm'

CASE WHEN E_E1.tota1 > 1000000

ELSE E_R1.level END) AS level

) As ¥

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

STEP #2: BREAK INTO REGIONS

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS

BEGIN

0 DECLARE @total float;

(SELECT NULL AS level
(SELECT SUM(o_totalprite)
FROM orders
WHERE o_custkey=@ckel) AS total

) As F]

DECLARE Q@level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey; _—

€)|1IF (etotal > 1000000)

(SELECT (
CASE WHEN E_r1.tota1 > 1000000

THEN 'Platingm'
ELSE E_R1.1level END) AS leyel

) As ¥

SET @level = 'Platinum';

6 ELSE
SET @level = 'Regular'; __“\\\

RETURN @level; ~——
END

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regulaf’

ELSE E_R2.1level END) AS level

) AS [FGE

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

STEP #2: BREAK INTO REGIONS

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN

0 DECLARE @total float;
DECLARE Q@level char(10);

SELECT @total = SUM(o_totalprice)

(SELECT NULL AS level
(SELECT SUM(o_totalprite)
FROM orders
WHERE o_custkey=@ckel) AS total

) As F]

FROM orders WHERE o_custkey=@ckey;

—

SET @level = 'Platinum';

€)|1IF (etotal > 1000000)
©|[ELSE

@)[RETURN Glevel,
END

-
SET @level = 'Regular'; __“\\\

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinrm'

ELSE E_R1.1level END) AS leyel

) As ¥

$CMU-DB

15-721 (Spring 2024)

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regulaf’

ELSE E_R2.1level END) AS level

) AS [FGE

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

STEP #3: MERGE EXPRESSIONS

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As]

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.1level END) AS level

) As @Y

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular'’
ELSE E_R2.1level END) AS level

) As ElGE

$CMU-DB

15-721 (Spring 2024)

»
»

SELECT E_R3.1level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) As 3Gl
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.1level END) AS level
) As [HlE
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As ElGE;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

STEP #3: MERGE EXPRESSIONS

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As]

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.1level END) AS level

) As @Y

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular'’
ELSE E_R2.1level END) AS level

) As ElGE

$CMU-DB

15-721 (Spring 2024)

SELECT E_R3.level .

¥ ¥ I,

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) As 3Gl
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.1level END) AS level
NE_R2
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’

ELSE E_R2.1level END) AS level<

) As ElGE;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

STEP #4: INLINE EXPRESSION

SELECT c_custkey, (

Original Query SELECT E_R3.level FROM

(SELECT NULL AS level,
SELECT c_custkey, (SELECT SUM(o_totalprice)

cust_level(c_custkey) » FROM orders
WHERE o_custkey=@ckey) AS total
FROM customer) AS
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.1level END) AS level

) As ¥

CROSS APPLY

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As FLE;

) FROM customer;

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

STEP #4: INLINE EXPRESSION

SELECT c_custkey, (

Original Query SELECT E_R3.level FROM

(SELECT NULL AS level,
SELECT c_cus:ckey_, (SELECT SUM(o_totalprice)

cust_level (c_custkey) » FROM orders
WHERE o_custkey=@ckey) AS total
FROM customer) AS
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.1level END) AS level
) As ¥
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level
) As FE;
) FROM customer;

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

STEP #5: OPTIMIZE

SELECT c_custkey, (
SELECT E_R3.1level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) AS
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level
) AS
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level
) As ElGE);

) FROM customer;

SELECT c.c_custkey,
CASE WHEN e.total > 1000000
THEN 'Platinum'’
ELSE 'Regular’
END
FROM customer ¢ LEFT OUTER JOIN
(SELECT o_custkey,
SUM(o_totalprice) AS total
FROM order GROUP BY o_custkey
) AS e
ON c.c_custkey=e.o_custkey;

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

CREATE FUNCTION getVal(@x int) e

BONUS OPTIMIZATIONS

RETURNS char(10) AS
BEGIN

DECLARE @val char(10);
IF (@x > 1000)

SET @val = 'high';
ELSE

SET @val = 'low';
RETURN @val + ' value';
END

$2CMU-DB

15-721 (Spring 2024)

SELECT getVal(5000);

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';
ELSE
SET @val = 'low';
RETURN @val + ' value';
END

Inline ‘

BONUS OPTIMIZATIONS

BEGIN
DECLARE @val char(10);
SET @val = 'high';

»

RETURN @val + ' value';
END
Dynamic Slicing

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000
THEN 'high'
ELSE 'low' END AS val)
AS
OUTER APPLY
(SELECT DT1.val + ' value'
AS returnval)

SELECT returnVal FROM
(SELECT 'high' AS val)
INJE_R1
OUTER APPLY
(SELECT DT1.val +

" value'
AS returnVal)

As GE

»

$CMU-DB

15-721 (Spring 2024)

»

BEGIN

DECLARE @val char(10);
SET @val = 'high value';
RETURN @val;

END

»

BEGIN
RETURN 'high value';
END

Constant Propagation : Dead Code
Elimination

»

& Folding

SELECT returnVal FROM
(SELECT 'high value'
AS returnVal)

As 3GH

»

SELECT 'high value';

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

SUPPORTED OPERATIONS (2019)

T-SQL Syntax:

— DECLARE, SET (variable declaration, assignment)
— SELECT (SQL query, assignment)

— IF / ELSE / ELSE IF (arbitrary nesting)

— RETURN (multiple occurrences)

— EXISTS, NOT EXISTS, ISNULL, IN,... (Other relational
algebra operations)

UDF invocation (nested/recursive with

configurable depth)
All SQL datatypes.

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

FROID UDF IMPROVEMENT STUDY 1

Table: 100k Tuples
1000
Azure Workload #1
é {0 # of Scalar UDFs 90
Froid Compatible 82 (91%)
R 1 M, <
8 01
Q
§ 1000
S Azure Workload #2
§.‘ 0 4 # of Scalar UDFs 178
= AR PR Froid Companiie
0.1

Source: Karthik Ramachandra

$2CMU-DB
o

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.microsoft.com/en-us/research/people/karam/

! ~—

| Order of magnitude "dra
observed by @jdanton in

"The other feature th

"The first time | tested it, was o}

g Karthik Ramachandra

What's New in SQL Server 2019: A Closer Loo

0.1

Source: Karthik Ramachandra

£=CMU-DB
15-721 (Spring 2024

)

matic" perf gains due to Froid
@SQLServer 2019 cTpP21!

at | referto as simply magic....

own away.

k at the Top ...

e ENT STUDY

Azure Workload #1
of Scalar UDFs 90
Froid Compatible 82 (91%)

Azure Workload #2
of Scalar UDFs 178
Froid Compatible 150 (85%)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.microsoft.com/en-us/research/people/karam/

@Karthik Ramachandra
| ains due to Froid

M 1] L | fg

| Order of magnitude dramatic” per c
[[| Server 2019 cTP21

observed by @jdanton in @SQ Azure Workload #1

i Tolmmy Scalar UDFs 90
n at | refer to as simply magic... #of
The other feature th T st patible .

g Karthik Ramachandra
"The firsttime | te} <

Quoting from the article:

ENT STUDY

What'
" the CPU time is 3 times lower ... and the query is orkload #2

more than 20x faster!" [UDFs 178
' ipatible 150 (85%)
' "For those, who use scalar UDFs extensively, the new |

0.1 | version looks like a gift from heaven. The |

SNSRI |1\ 0rovement is very impressive. "

$CMU-DB |
|

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.microsoft.com/en-us/research/people/karam/

@ Karth|kRamachandra g KarthikRamachandra""’”

‘: . n HP f g'c'
' Order of magnitude "dramatic' PEM &€ Scajar ypp i i
| observed by @jdantonin @SQLServe Inlining (aka Froiq) at work :)

| ® Gail Shaw 05QLinthewiig .y, -
that | refer to as St Okwow. Scalar function (trimmr o .
"The other feature times. unction (trimming time off date) run against 840k
rows 25

"B Karthik Ramach; Compat mode 140: 4
:4 min 25
. . | C sec
"The first time | te! @ Ompat mode 150: 9 seconds
Quoting from the This is going to Make a massive differencel

What'
" the CPU time is 3 times lower ... and the query is

more than 20x faster!"

| "For those, who use scalar UDFs extensively, the new
Rl Version looks like a gift from heaven. The

SNSRI |1\ 0rovement is very impressive. "
£2CMU-DB |

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.microsoft.com/en-us/research/people/karam/

APFEL: UDFs-TO-CTEs

Rewrite UDFs into plain SQL commands.

Use recursive common table expressions (CTEs) to
support iterations and other control flow concepts
not supported in Froid.

Implemented as a rewrite middleware layer on top

of any DBMS that supports CTEs.
— Online Demo: https://apfel-db.cs.uni-tuebingen.de/

; | COMPILING PL/SQL AWAY
CIDR 2020

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://apfel-db.cs.uni-tuebingen.de/
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf

APFEL: UDFs-TO-CTEs OVERVIEW

Step #1 — Static Single Assignment Form

Step #2 — Administrative Normal Form

Step #3 — Mutual to Direct Recursion
Step #4 — Tail Recursion to WITH RECURSIVE
Step #5 — Run Through Query Optimizer

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Static_single_assignment_form
https://en.wikipedia.org/wiki/A-normal_form

STEP #1: STATIC SINGLE ASSIGNMENT

CREATE FUNCTION pow(x int, n int) pow(x,n):
RETURNS int AS i, €« 0;
$$ Py € 0;
DECLARE while: i, « ©(iy,1i,);
iint = 0; » p; < ©(Py,Po);
p int = 1; if i, < n then
BEGIN goto loop;
WHILE i < n LOOP else
P =p * X; goto exit;
i=1+1; loop: p, < p; * Xx;
END LOOP; i, « i, + 1;
RETURN p; goto while;
END; exit: return p,;
$$

Source: Torsten Grust

$2CMU-DB
111111 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

STEP #2: ADMINISTRATIVE NORMAL FORM

while:

loop:

exit:

pow(x,n):

9;
9;
®(1g,1,);
Py < ©(Py,P,);
if i, < n then
goto loop;
else
goto exit;
P, € Py * X;
1, « i, + 1;
goto while;
return p,;

o
S
r»r A 4

Source: Torsten Grust

$CMU-DB

15-721 (Spring 2024)

»

pow(x,n) =
let i, = 0 in
let p, = 1 in
while(i,,py,X%,Nn)

while(i,,p;,x,n) =
let t, = i, >= n in
if t, then p,
else body(i,,p;,x,n)

bOdy(j-]rp]rXrn) =
let p, = p; * x in
let i, = i, + 1 in
while(i,,p,,X,n)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

STEP #3: MUTUAL TO DIRECT RECURSION

pow(x,n) =
let i, = 0 in
let p, = 1 in
while(i,,py,Xx,Nn)

while(i,,p,,x,n) =
let t, = i, >= n in
if t, then p,
else body(i,,p;,x,n)

bOdy(j-])p])X)n) =
let p, = p;, * x in
let i, = i, + 1 in
while(i,,p,,x,n)

Source: Torsten Grust

$CMU-DB

15-721 (Spring 2024)

»

pow(x,n) =
let i, = 0 in
let p, = 1 in
run(i,, Py, X,Nn)

run(i,,p,,Xx,n) =
let t, = i, >=n in
if t, then p,
else
let p, = p; * x in
let i, =i, + 1 in
run(i,,p,,X,n)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

STEP #4: WITH RECURSIVE

pow(x,n) =
let i, = 0 in
let p, = 1 in
run(i,, Py, X,Nn)

run(i,,p;,x,n) =
let t, = i, >= n in
if t, then p,
else
let p, = p;, * x in
let i, = i, + 1 in
run(i,,p,,X,n)

Source: Torsten Grust

$CMU-DB

15-721 (Spring 2024)

»

WITH RECURSIVE
run("call?",i1,p1,x,n,result) AS (

SELECT true,0,1,x,n,NULL

UNION ALL
SELECT iter.* FROM run, LATERAL (

SELECT false,0,0,0,0,pT
WHERE i1 >= n

UNION ALL
SELECT true,i1+1,pl1*x,x,n,0
WHERE i1 < n

) AS iter("call?",il,pl1,x,n,result)
WHERE run."call?"

)
SELECT * FROM run;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

STEP #4: WITH RECURSIVE

pow(x,n) =

let i, = 0 in
let p, = 1 in
run(i,, Py, X,Nn)

run(i,,p;,x,n) =
let t, = i, >= n in
if t, then p,
else
let p, = p;, * x in
let i, = i, + 1 in
run(i,,p,,X,n)

Source: Torsten Grust

$CMU-DB

15-721 (Spring 2024)

WITH RECURSIVE
run("call?",i1,p1,x,n,result) AS (

—>ISELECT true,0,1,x,n,NULL

UNION ALL
SELECT iter.* FROM run, LATERAL (

SELECT false,0,0,0,0,pT
WHERE i1 >= n

UNION ALL
SELECT true,i1+1,pl1*x,x,n,0
WHERE i1 < n

) AS iter("call?",il,pl1,x,n,result)
WHERE run."call?"

)
SELECT * FROM run;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

STEP #4: WITH RECURSIVE

pow(x,n) =

let i, = 0 in
let p, = 1 in
run(i,, Py, X,Nn)

|

run(i,,p;,x,n) =
let t, = i, >= n in

if t, then p,

else

let p, = p;, * x in
let i, = i, + 1 in
run(i,,p,,X,n)

»
g
s

Source: Torsten Grust

$CMU-DB

15-721 (Spring 2024)

WITH RECURSIVE
run("call?",i1,p1,x,n,result) AS (

—>ISELECT true,0,1,x,n,NULL

UNION ALL
SELECT iter.* FROM run, LATERAL (

SELECT false,0,0,0,0,pT
WHERE i1 >= n

—=> UNION ALL

SELECT true,i1+1,pl1*x,x,n,0
WHERE i1 < n

) AS iter("call?",il,pl1,x,n,result)
WHERE run."call?"

)
SELECT * FROM run;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

4500

N
o
o
o

Run Time (ms)
*
S

Source: Torsten Grust

£=CMU-DB

15-721 (Spring 2024)

UDFs-TO-CTEs EVALUATION

POW UDF on Postgres v11.3
-+-PL/SQL o-CTE
lb 26 36 40 50 éO %O éO 50 160
of Iterations (x1000)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

UDF BATCHING

Transform UDF statements into UPDATE queries
that operate on a temporary table representing the

state of variables in the UDF.
— Each tuple in the state table corresponds to one input tuple
to the UDF.

This method is suitable for DBMSs that are unable
to decorrelate any possible subquery.

— | DEAR USER-DEFINED FUNCTIONS, INLINING ISN'T
WORKING OUT SO GREAT FOR US. LET'S TRY BATCHING
'(I;%QII?()KZEOUR RELATIONSHIP WORK. SINCERELY, SQL

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf

UDF

CREATE FUNCTION getManufact(item_id INT)
RETURNS CHAR(50) AS $$
DECLARE
man CHAR(50); cntl INT; cnt2 INT;
BEGIN
man := '';
cnt1 (SELECT COUNT(*)
FROM store_sales_history, date_dim
WHERE ss_item_sk = item_id
AND d_date_sk = ss_sold_date_sk
AND d_year = 2023);
(SELECT COUNT(*)
FROM catalog_sales_history, date_dim
WHERE cs_item_sk = item_id
AND d_date_sk = cs_sold_date_sk
AND d_year = 2023);
IF (cnt1l > @ AND cnt2 > 0)
THEN man := (SELECT i_manufact FROM item
WHERE i_item_sk = item_id);
ELSE man := 'outdated item';
END IF;
RETURN man;
END $$ LANGUAGE PLPGSQL;

cnt2 :

Source: Kai Franz

$CMU-DB

15-721 (Spring 2024)

BATCHING

UDF 20b from ProcBench

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/kai-franz
https://github.com/microsoft/SQL-ProcBench

UDF BATCHING

DECLARE

BEGIN
man :=

cnt‘:!'
cnt<:!>

CREATE FUNCTION getManufact(item_id INT)
RETURNS CHAR(50) AS $$

man CHAR(50); cntl INT; cnt2 INT;

AND d_vear = 2023);

(SELECT COUNT(*)
FROM store_sales_history, date_dim
WHERE ss_item_sk = item_id
AND d_date_sk = ss_sold_date_sk

(SELECT COUNT(*)
FROM catalog_sales_history, date_dim
WHERE cs_item_sk = item_id
AND d_date_sk = cs_sold_date_sk
AND d_year = 2023);

IF (cntl > 0 AND cnt? > 0)

THEN ma SELECT i_manufact FROM item
WHERE i_item_sk = item_id);
ELSE man := "outdated 1tem’;
END IF;
RETURN man;

END $$ LANGUAGE PLPGSQL;

Source: Kai Franz

$CMU-DB

15-721 (Spring 2024)

UDF 20b from ProcBench

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/kai-franz
https://github.com/microsoft/SQL-ProcBench

UDF BATCHING

DECLARE

BEGIN
man :=

CREATE FUNCTION getManufact(item_id INT)
RETURNS CHAR(50) AS $$

man CHAR(50); cntl INT; cnt2 INT;

cnt@ CSELECT COUNT (%)

AND d year = 2923);
cnt@ (SELECT COUNT (%)

FROM store_sales_history, date_dim
WHERE ss_item_sk = item_id
AND d_date_sk = ss_sold_date_sk

FROM catalog_sales_history, date_dim
WHERE cs_item_sk = item_id

AND d_date_sk = cs_sold_date_sk

AND d_year = 2023);

THEN ma

ELSE man
END IF;

IF (cntl > 0 AND cnt? > 0)

SELECT i_manufact FROM item
WHERE i_item_sk = item_id);
:= ‘outdated item’;

RETURN ma
END $$ LAN{

Source: Kai Franz

$CMU-DB

SELECT ws_item_sk
FROM (SELECT ws_item_sk, COUNT(*) AS cnt
FROM web_sales
GROUP BY ws_item_sk
ORDER BY cnt DESC, ws_item_sk
LIMIT 25000) AS t1
WHERE getManufact(ws_item_sk) = 'CompanyX';

15-721 (Spring 2024)

UDF 20b from ProcBench

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/kai-franz
https://github.com/microsoft/SQL-ProcBench

UDF BATCHING

DECLARE

BEGIN
man :=

CREATE FUNCTION getManufact(item_id INT)
RETURNS CHAR(50) AS $$

man CHAR(50); cntl INT; cnt2 INT;

cnt@ CSELECT COUNT (%)

AND d year = 2923);
cnt@ (SELECT COUNT (%)

FROM store_sales_history, date_dim
WHERE ss_item_sk = item_id
AND d_date_sk = ss_sold_date_sk

FROM catalog_sales_history, date_dim
WHERE cs_item_sk = item_id

AND d_date_sk = cs_sold_date_sk

AND d_year = 2023);

THEN ma

ELSE man
END IF;

IF (cntl > 0 AND cnt? > 0)

SELECT i_manufact FROM item
WHERE i_item_sk = item_id);
:= ‘outdated item’;

RETURN ma
END $$ LAN{

Source: Kai Franz

$CMU-DB

SELECT ws item sk

F@ (SELECT ws_item_sk, COUNT(*) AS cnt
FROM web_sales
GROUP BY ws_item_sk
ORDER BY cnt DESC, ws_item_sk
LIMIT 25000) AS t1
WHERE getManufact(ws_item_sk) = 'CompanyX';

15-721 (Spring 2024)

UDF 20b from ProcBench

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/kai-franz
https://github.com/microsoft/SQL-ProcBench

UDF BATCHING -

CREATE FUNCTION getManufact(item_id INT) CREATE TEMPORARY TABLE state (

RETURNS CHAR(50) AS $$ item INT, man CHAR(50), cntl INT, cnt2 INT, p BOOLEAN,

DECLARE res CHAR(50),returned BOOLEAN DEFAULT false, mult INT);

man CHAR(50); cntl INT; cnt2 INT;

BEGIN INSERT INTO state (item, mult)

man := "'; SELECT ws_item_sk, COUNT(*) AS mult

cnt@ (SELECT COUNT(*) FROM
FROM store_sales_history, date_dim GROUP BY ws_item_sk;

WHERE ss_item_sk = item_id

AND d_date_sk = ss_sold_date_sk UPDATE state SET man = '' WHERE NOT returned;
AND d_vear = 2023); UPDATE state SET cntl = [("]B] WHERE NOT returned;
cnt@ (SELECT COUNT(*) UPDATE state SET cnt2 = WHERE NOT returned;
FROM catalog_sales_history, date_dim UPDATE state SET p = COALESCE(cnt1>0 AND cnt2>0, FALSE)
WHERE cs_item_sk = item_id WHERE NOT returned;
AND d_date_sk = cs_sold_date_sk UPDATE state SET man = [(RE)] WHERE NOT returned AND p;
AND d_year = 2023); UPDATE state SET result = man, returned = true
IF (cnt1l > 0 AND cnt2 > 0) WHERE NOT returned AND p;
THEN ma SELECT i_manufact FROM item UPDATE state SET man = 'outdated item'
WHERE i_item_sk = item_id); WHERE NOT returned AND NOT p;
ELSE man := "outdated i1tem’; UPDATE state SET res = man, returned = true
END IF; WHERE NOT returned AND NOT p;
RETURN mal SELECT ws _item sk
END $$ LAN{ F@ (SELECT ws_item_sk, COUNT(x) AS cnt SELECT s.item FROM state AS s,
FROM web_sales LATERAL generate_series(1, s.mult)
GROUP BY ws_item_sk WHERE s.res = 'CompanyX';
] ORDER BY cnt DESC, ws_item_sk
Source: Kai Franz LIMIT 25000) AS t1
£=CMU-DB WHERE getManufact(ws_item_sk) = 'CompanyX';

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/kai-franz
https://github.com/microsoft/SQL-ProcBench

PROCEDURAL EXTENSIONS OF SQL

Microsoft team published an analysis of real world
UDFs, TVFs, Triggers and Stored Procedures.

Also released an open-source benchmark based on
their analysis called SQL ProcBench.

— Authors argue that ProcBench faithfully represents real
world workloads

PROCEDURAL EXTENSIONS OF SQL:
UNDERSTANDING THEIR USAGE IN THE WILD
VLDB 2021

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://github.com/microsoft/SQL-ProcBench
https://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf
https://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf

SCALAR UDFS IN PROCBENCH

UDFs with No Parameters

SELECT maxReturnReasonWeb();

CREATE FUNCTION maxReturnReasonWeb()
RETURNS char(100) AS

BEGIN

DECLARE @reason_desc char(100);

SELECT @Qreason_desc
FROM ...;

RETURN @reason_desc;
END

Source: Sam Arch

$CMU-DB

15-721 (Spring 2024)

UDF invoked once

No substantial performance
advantage with UDF Inlining

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://samarch.xyz/

SCALAR UDFS IN THE PROCBENCH

UDEFs with Parameters

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS

BEGIN

DECLARE @total float;

DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE

SET @level = 'Regular';

RETURN @level;
END

UDF invoked per customer
Implicit join between tables

Huge performance win with
inlining by “decorrelating”
the subquery

SELECT cust_level(customer_id)
FROM customer;

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

UDF BATCHING VS. INLINING

UDFs
Method 15 6 7 12131517 18 20a_q1 20a_qg2 20b_q1 20b_q2

sQL s Inlined v v
€™V Batched vV (VVV Vv Vv VvV
Oracl Inlined v v
racie Batched V)V v Vv
SuckDEB Inlined VvV vV VVVVVY vV V v
uc Batched V'V vV VVVVVYV VvV v
Inlined
PostgreSQL Batched

Table 1: Subquery Decorrelation — Whether a given UDF’s subqueries
could be decorrelated by a DBMS after inlining or batching. Symbol (V)
indicates that some, but not all subqueries could be decorrelated.

DEAR USER-DEFINED FUNCTIONS, INLINING ISN'T
WORKING OUT SO GREAT FOR US. LET'S TRY BATCHING
E%QIIQJKZEOUR RELATIONSHIP WORK. SINCERELY, SQL

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf

UDF BATCHING VS. INLINING

UDFs
Method 15 6 7 12131517 18 20a_q1 20a_qg2 20b_q1 20b_q2

sQL s Inlined v v
€™V Batched vV (VVV Vv Vv VvV
Oracl Inlined v v
racie Batched V)V v Vv
SuckDEB Inlined VvV V VVVVVY V V v
uc Batched V'V vV VVVVVYV VvV v
Inlined
PostgreSQL Batched

Table 1: Subquery Decorrelation — Whether a given UDF’s subqueries
could be decorrelated by a DBMS after inlining or batching. Symbol (V)
indicates that some, but not all subqueries could be decorrelated.

DEAR USER-DEFINED FUNCTIONS, INLINING ISN'T
WORKING OUT SO GREAT FOR US. LET'S TRY BATCHING
E%QIIQJKZEOUR RELATIONSHIP WORK. SINCERELY, SQL

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf

UDF BATCHING VS. INLINING

Batched

UDFs
Method 1 5 6 7 12131517 18 20a_q1 20a_q2 20b_q1 20b_q2
Inlined v v
SQL Server Batched v v
Oracle Blnlined g & Flattening
atched NeSted LAT .
DuckDB Inlined j EIML jOlnS

in DuckDB

Inlined
PostgreSQL Batched /
>
Table 1: Subquery D D N / ! !
could be decorrelated
indicates that some, b

DEAR USER-DEFINED FUNCTIONS, INLINING ISN'T Sam Arch, Mayank Baranwal, Arham Ch
’ opra

WORKING OUT SO GREAT FOR US. LET'S TRY BATC
-CI-:%QAQJEEOUR RELATIONSHIP WORK. SINCERELY, SQL

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf
https://15721.courses.cs.cmu.edu/spring2023/files/final/flateral.pdf

ort for nested |aterals #7528 I N L I N I N G
‘7 0 on ey 22,2023 Q -
20a_q1 20a_q2 20b_q1 20b_q2

{3 Conversation 18 o Commit 71, Che [@ Files !
ing of subqueries and LATERAL joins)

. arhamchopra
This PR adds support f to DuckDB. In the
current version of DuckDB, the f will produce a binder error: V V
[]
k) t3(k), (SELES ki) ta(l)) t2(3) 2 nt'ng & FI att °
after this PR, DuckDB produ LA I ERAL PS . g
)y t(i), (SELECT * FROM SELECT 142 K) t3(K)/ (SELECT k+i) ta(1)) t2(3)i iC D JOIns

yy Mytherin

- Merged

or nested LATERAL joins (arbitrary nesti
ollowing example from PR

ELECT 42) t(i), (SELECT ° FROM (SELECT 142

However, ces the correct result:

gove|oede el
| inté4 | inté4 |

Further, after this PR, queries with correlations across LATERALs and subgueries also produce the correct result: D

Tm) t(i), (SELECT i+ m) t2(3)):

ank
Baranwal, Arham Chopr
a

|
. R SINCERELY, SQL

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf
https://15721.courses.cs.cmu.edu/spring2023/files/final/flateral.pdf
https://github.com/duckdb/duckdb/pull/7528

UDF BATCHING VS. INLINING

UDFs
Method 15 6 7 12131517 18 20a_q1 20a_qg2 20b_q1 20b_q2

sQL s Inlined v v
€™V Batched vV (VVV Vv Vv VvV
Oracl Inlined v v
racie Batched V)V v Vv
SuckDEB Inlined VvV vV VVVVVY vV V v
uc Batched V'V vV VVVVVYV VvV v
Inlined
PostgreSQL Batched

Table 1: Subquery Decorrelation — Whether a given UDF’s subqueries
could be decorrelated by a DBMS after inlining or batching. Symbol (V)
indicates that some, but not all subqueries could be decorrelated.

DEAR USER-DEFINED FUNCTIONS, INLINING ISN'T
WORKING OUT SO GREAT FOR US. LET'S TRY BATCHING
E%QIIQJKZEOUR RELATIONSHIP WORK. SINCERELY, SQL

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf

DECORRELATION OF SUBQUERIES (MSSQL)

Algebraic rewrite rules for APPLY Execute the rewrite rules

B A® B — Bouwb 1 | Where applicable
if no parameters in F resolved from R
R A® (0,E) = R®E, (2)
if no parameters in F resolved from R Some rewrites may require
RA* (0,B) = o,(RA E) (3) L ;
RA (nB) = mooemmmm(BA*E) () Fluphcatmg subexpressions
RA*(EiUE) = (RA*E)URA*E) (5 | in the query plan tree (and
RA* (B1-E;) = (RA“E))-(RA*E) (6) | are cost-based decisions)
R.AX (El X Ez) = (R .AX El) XR.key (R .AX EQ) (7)
(QA FE) = 0a UCOlumnS(R),F(R A* E) (8)
(gFE) = gcolumns(R),F’(R -ALOJ E) (9)

—|ORTHOGONAL OPTIMIZATION OF SUBQUERIES
AND AGGREGATION
SIGMOD 2001

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf
https://sigmodrecord.org/publications/sigmodRecord/0106/pdfs/Orthogonal%20Optimization%20of%20Subqueries%20and%20Aggregation.pdf

DECORRELATION OF SUBQUERIES (GERMI-\HS)ln

Dependent Join Operator Introduces a new
“Dependent Join” operator

Te.grade=m into the Query Plan DAG
|
X “

~ r Systematically decorrelates

M. id=e.sid B;m:min(e2.grade) b
RN | any subquery

students s €Xams € Og.id=e2.sid
I
exams e2

UNNESTING ARBITRARY QUERIES
BTW 2

0CMU -DB

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf
https://cs.emis.de/LNI/Proceedings/Proceedings241/383.pdf

PARTING THOUGHTS

This is huge. You rarely get 500x speed up without
either switching to a new DBMS or rewriting your
application.

But the DBMS must support German-style (aka
HyPer) sub-query decorrelation.

Another optimization approach is to compile the

UDF into machine code.
— This does not solve the optimizer's cost model problem.

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

NEXT CLASS

Database Networking Protocols
And a little bit about kernel bypass methods...

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

	Introduction
	Slide 1: User-Defined Functions
	Slide 2: LAST CLASS
	Slide 3: EMBEDDED DATABASE LOGIC
	Slide 4: EMBEDDED DATABASE LOGIC
	Slide 5: USER-DEFINED FUNCTIONS
	Slide 6: USER-DEFINED FUNCTIONS
	Slide 7: USER-DEFINED FUNCTIONS
	Slide 8: TODAY’S AGENDA

	UDFs
	Slide 9: UDF: SQL FUNCTIONS
	Slide 10: UDF: SQL FUNCTIONS
	Slide 11: UDF: SQL FUNCTIONS
	Slide 12: UDF: SQL FUNCTIONS
	Slide 13: UDF: EXTERNAL PROGRAMMING LANGUAGE
	Slide 14: UDF: EXTERNAL PROGRAMMING LANGUAGE
	Slide 15: UDF ADVANTAGES
	Slide 16: UDF DISADVANTAGES (1)
	Slide 17: UDF DISADVANTAGES (2)
	Slide 18: UDF DISADVANTAGES (2)
	Slide 19: UDF DISADVANTAGES (2)
	Slide 20: UDF PERFORMANCE
	Slide 21: UDF ACCELERATION

	Inlining
	Slide 22: FROID UDF INLINING
	Slide 23: SUB-QUERIES
	Slide 24: SUB-QUERIES: REWRITE
	Slide 25: LATERAL JOIN
	Slide 26: LATERAL JOIN: EXAMPLE
	Slide 27: LATERAL JOIN: EXAMPLE
	Slide 28: FROID OVERVIEW
	Slide 29: STEP #1: TRANSFORM STATEMENTS
	Slide 30: STEP #2: BREAK INTO REGIONS
	Slide 31: STEP #2: BREAK INTO REGIONS
	Slide 32: STEP #2: BREAK INTO REGIONS
	Slide 33: STEP #2: BREAK INTO REGIONS
	Slide 34: STEP #2: BREAK INTO REGIONS
	Slide 35: STEP #3: MERGE EXPRESSIONS
	Slide 36: STEP #3: MERGE EXPRESSIONS
	Slide 37: STEP #4: INLINE EXPRESSION
	Slide 38: STEP #4: INLINE EXPRESSION
	Slide 39: STEP #5: OPTIMIZE
	Slide 40: BONUS OPTIMIZATIONS
	Slide 41: BONUS OPTIMIZATIONS
	Slide 42: SUPPORTED OPERATIONS (2019)
	Slide 43: FROID UDF IMPROVEMENT STUDY
	Slide 44: FROID UDF IMPROVEMENT STUDY
	Slide 45: FROID UDF IMPROVEMENT STUDY
	Slide 46: FROID UDF IMPROVEMENT STUDY

	German CTE
	Slide 47: APFEL: UDFs-TO-CTEs
	Slide 48: APFEL: UDFs-TO-CTEs OVERVIEW
	Slide 49: STEP #1: STATIC SINGLE ASSIGNMENT
	Slide 50: STEP #2: ADMINISTRATIVE NORMAL FORM
	Slide 51: STEP #3: MUTUAL TO DIRECT RECURSION
	Slide 52: STEP #4: WITH RECURSIVE
	Slide 53: STEP #4: WITH RECURSIVE
	Slide 54: STEP #4: WITH RECURSIVE
	Slide 55: UDFs-TO-CTEs EVALUATION

	Batching
	Slide 56: UDF BATCHING
	Slide 57: UDF BATCHING
	Slide 58: UDF BATCHING
	Slide 59: UDF BATCHING
	Slide 60: UDF BATCHING
	Slide 61: UDF BATCHING

	Challenges
	Slide 62: PROCEDURAL EXTENSIONS OF SQL
	Slide 63: SCALAR UDFS IN PROCBENCH
	Slide 64: SCALAR UDFS IN THE PROCBENCH
	Slide 65: UDF BATCHING VS. INLINING
	Slide 66: UDF BATCHING VS. INLINING
	Slide 67: UDF BATCHING VS. INLINING
	Slide 68: UDF BATCHING VS. INLINING
	Slide 69: UDF BATCHING VS. INLINING
	Slide 70: DECORRELATION OF SUBQUERIES (MSSQL)
	Slide 71: DECORRELATION OF SUBQUERIES (GERMANS)

	Conclusion
	Slide 72: PARTING THOUGHTS
	Slide 73: NEXT CLASS

