
ADVANCED
DATABASE

SYSTEMS

Andy Pavlo
CMU 15-721
Spring 202411

User-
Defined

Functions

https://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/
https://db.cs.cmu.edu/

15-721 (Spring 2024)

LAST CLASS

We covered two category of join algorithms for
modern OLAP DBMSs.

Hash Joins: Every DBMS does this now

Worst-case Optimal Joins: Every DBMS will
need to do something like this in the future.

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

EMBEDDED DATABASE LOGIC

Moving application logic into the DBMS can
(potentially) provide several benefits:
→ Fewer network round-trips (better efficiency).
→ Immediate notification of changes.
→ DBMS spends less time waiting during transactions.
→ Developers do not have to reimplement functionality.
→ Extend the functionality of the DBMS.

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

EMBEDDED DATABASE LOGIC

User-Defined Functions (UDFs)

Stored Procedures

Triggers

User-Defined Types (UDTs)

User-Defined Aggregates (UDAs)

4

69%

24%

7%

Triggers UDFs

Stored Procedures

PROCEDURAL EXTENSIONS OF SQL:
UNDERSTANDING THEIR USAGE IN THE WILD
VLDB 2021

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf
https://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf

15-721 (Spring 2024)

USER-DEFINED FUNCTIONS

A user-defined function (UDF) is a function
written by the application developer that extends
the system's functionality beyond its built-in
operations.
→ It takes in input arguments (scalars)
→ Perform some computation
→ Return a result (scalars, tables)

5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

USER-DEFINED FUNCTIONS

6

Application

execute(SQL)
<Program Logic>
execute(SQL)
<Program Logic>
⋮

func1(args):
execute(SQL)
<Program Logic>
return (result)

func2(args):
<Program Logic>
return (result)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

USER-DEFINED FUNCTIONS

6

execute(SQL)
execute(SQL)

Application
SELECT * FROM xxx
WHERE val = func1(id)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TODAY’S AGENDA

Background

UDF In-lining

UDF CTE Conversion

UDF Batching

7

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

UDF: SQL FUNCTIONS

A SQL-based UDF contains a list of queries that the
DBMS executes in order when invoked.
→ The function returns the result of the last query executed.

8

CREATE FUNCTION get_foo(int)
 RETURNS foo
 LANGUAGE SQL AS $$
 SELECT * FROM foo WHERE foo.id = $1;
$$;

Input Args

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

UDF: SQL FUNCTIONS

A SQL-based UDF contains a list of queries that the
DBMS executes in order when invoked.
→ The function returns the result of the last query executed.

8

CREATE FUNCTION get_foo(int)
 RETURNS foo
 LANGUAGE SQL AS $$
 SELECT * FROM foo WHERE foo.id = $1;
$$;

Return Args

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

UDF: SQL FUNCTIONS

A SQL-based UDF contains a list of queries that the
DBMS executes in order when invoked.
→ The function returns the result of the last query executed.

8

CREATE FUNCTION get_foo(int)
 RETURNS foo
 LANGUAGE SQL AS $$
 SELECT * FROM foo WHERE foo.id = $1;
$$;

Function Body

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

UDF: SQL FUNCTIONS

A SQL-based UDF contains a list of queries that the
DBMS executes in order when invoked.
→ The function returns the result of the last query executed.

8

CREATE FUNCTION get_foo(int)
 RETURNS foo
 LANGUAGE SQL AS $$
 SELECT * FROM foo WHERE foo.id = $1;
$$;

SELECT get_foo(1); SELECT * FROM get_foo(1);

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

UDF: EXTERNAL PROGRAMMING LANGUAGE

Some DBMSs support writing UDFs in languages
other than SQL.
→ SQL Standard: SQL/PSM
→ Oracle/DB2: PL/SQL
→ Postgres: PL/pgSQL
→ DB2: SQL PL
→ MSSQL/Sybase: Transact-SQL

Other systems support more common
programming languages:
→ Sandbox vs. non-Sandbox

9

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/SQL/PSM
https://en.wikipedia.org/wiki/PL/SQL
https://en.wikipedia.org/wiki/PL/pgSQL
https://en.wikipedia.org/wiki/SQL_PL
https://en.wikipedia.org/wiki/Transact-SQL

15-721 (Spring 2024)

UDF: EXTERNAL PROGRAMMING LANGUAGE

Get all the customer ids and
compute their customer service
level based on the amount of
money they have spent.

10

SELECT c_custkey,
 cust_level(c_custkey)
FROM customer

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
 DECLARE @total float;
 DECLARE @level char(10);

 SELECT @total = SUM(o_totalprice)
 FROM orders WHERE o_custkey=@ckey;

 IF (@total > 1000000)
 SET @level = 'Platinum';
 ELSE
 SET @level = 'Regular';

 RETURN @level;
END

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

UDF ADVANTAGES

They encourage modularity and code reuse
→ Different queries can reuse the same application logic

without having to reimplement it each time.

Fewer network round-trips between application
server and DBMS for complex operations.

Some types of application logic are easier to express
and read as UDFs than SQL.

11

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

UDF DISADVANTAGES (1)

Query optimizers treat external programming
language UDFs as black boxes.
→ DBMS is unable to estimate the function's cost / selectivity

if it doesn't understand what the logic inside of it will do
when it runs.

→ Example: WHERE val = my_udf(123)

It is difficult to parallelize UDFs due to correlated
queries inside of them.
→ Some DBMSs will only execute queries with a single thread

if they contain a UDF.
→ Some UDFs incrementally construct queries.

12

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

UDF DISADVANTAGES (2)

Complex UDFs in SELECT / WHERE clauses force the
DBMS to execute iteratively.
→ RBAR = "Row By Agonizing Row"
→ Things get even worse if UDF invokes queries due to

implicit joins that the optimizer cannot "see".

Since the DBMS executes the commands in the
UDF one-by-one, it is unable to perform cross-
statement optimizations.

13

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

UDF DISADVANTAGES (2)

Complex UDFs in SELECT / WHERE clauses force the
DBMS to execute iteratively.
→ RBAR = "Row By Agonizing Row"
→ Things get even worse if UDF invokes queries due to

implicit joins that the optimizer cannot "see".

Since the DBMS executes the commands in the
UDF one-by-one, it is unable to perform cross-
statement optimizations.

13

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://sqlblogcasts.com/blogs/simons/archive/2008/11/03/TSQL-Scalar-functions-are-evil-.aspx

15-721 (Spring 2024)

UDF DISADVANTAGES (2)

Complex UDFs in SELECT / WHERE clauses force the
DBMS to execute iteratively.
→ RBAR = "Row By Agonizing Row"
→ Things get even worse if UDF invokes queries due to

implicit joins that the optimizer cannot "see".

Since the DBMS executes the commands in the
UDF one-by-one, it is unable to perform cross-
statement optimizations.

13

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://sqlblogcasts.com/blogs/simons/archive/2008/11/03/TSQL-Scalar-functions-are-evil-.aspx
https://techcommunity.microsoft.com/t5/datacat/soften-the-rbar-impact-with-native-compiled-udfs-in-sql-server/ba-p/305260?advanced=false&collapse_discussion=true&search_type=thread

15-721 (Spring 2024)

UDF PERFORMANCE

TPC-H Q12 using a UDF (SF=1).
→ Original Query: 0.8 sec
→ Query + UDF: 13 hr 30 min

SELECT l_shipmode,
 SUM(CASE
 WHEN o_orderpriority <> '1-URGENT'
 THEN 1 ELSE 0 END
) AS low_line_count
 FROM orders, lineitem
 WHERE o_orderkey = l_orderkey
 AND l_shipmode IN ('MAIL','SHIP')
 AND l_commitdate < l_receiptdate
 AND l_shipdate < l_commitdate
 AND l_receiptdate >= '1994-01-01'
 AND dbo.cust_name(o_custkey) IS NOT NULL
 GROUP BY l_shipmode
 ORDER BY l_shipmode

CREATE FUNCTION cust_name(@ckey int)
RETURNS char(25) AS
BEGIN
 DECLARE @n char(25);
 SELECT @n = c_name
 FROM customer WHERE c_custkey = @ckey;
 RETURN @n;
END

Source: Karthik Ramachandra

Microsoft SQL Server

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.microsoft.com/en-us/research/people/karam/

15-721 (Spring 2024)

UDF ACCELERATION

Approach #1: Compilation
→ Compile interpreted UDF code into native machine code.

Approach #2: Parallelization
→ Rely on user-defined annotations to determine which

portions of a UDF can be safely executed in parallel.

Approach #3: Inlining
→ Convert UDF into declarative form and then inline it into

the calling query.

Approach #4: Batching
→ Convert a UDF into corresponding SQL queries that

operate on multiple tuples at a time.

15

Source: Surabhi Gupta

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf

15-721 (Spring 2024)

FROID UDF INLINING

Automatically convert UDFs into relational algebra
expressions that are inlined as sub-queries.
→ Does not require the app developer to change UDF code.

Perform conversion during the rewrite phase to
avoid having to change the cost-base optimizer.
→ Commercial DBMSs already have powerful transformation

rules for executing sub-queries efficiently.

16

FROID: OPTIMIZATION OF IMPERATIVE PROGRAMS
IN A RELATIONAL DATABASE
VLDB 2017

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p432-ramachandra.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p432-ramachandra.pdf

15-721 (Spring 2024)

SUB-QUERIES

The DBMS treats nested sub-queries in the where
clause as functions that take parameters and return
a single value or set of values.

Two Approaches:
→ Rewrite to de-correlate and/or flatten them
→ Decompose nested query and store result to temporary

table. Then the outer joins with the temporary table.

We will cover the German-style de-correlation for
sub-queries next week…

17

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SUB-QUERIES: REWRITE

Example: Retrieve the first
user that has made at least
two purchases.

18

SELECT user_id FROM orders AS o1
 WHERE EXISTS(
 SELECT COUNT(*) FROM orders AS o2
 WHERE o1.user_id = o2.user_id
 GROUP BY o2.user_id HAVING COUNT(*) >= 2
)
 ORDER BY user_id ASC LIMIT 1;

SELECT user_id FROM orders
 GROUP BY user_id
HAVING COUNT(*) >= 2
 ORDER BY user_id ASC LIMIT 1;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

LATERAL JOIN

A lateral inner subquery can refer to fields in rows
of the table reference to determine which rows to
return.
→ Allows you to have sub-queries in FROM clause.

The DBMS iterates through each row in the table
referenced and evaluates the inner sub-query for
each row.
→ The rows returned by the inner sub-query are added to the

result of the join with the outer query.

19

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

LATERAL JOIN: EXAMPLE

Example: Retrieve the first
user that has made at least
two purchases along with
the timestamps of the first
and next orders.

20

SELECT user_id, first_order, next_order, id
 FROM (SELECT user_id,
 MIN(created) AS first_order
 FROM orders GROUP BY user_id) AS o1
 INNER JOIN LATERAL
 (SELECT id, created AS next_order
 FROM orders
 WHERE user_id = o1.user_id
 AND created > o1.first_order
 ORDER BY created ASC LIMIT 1) AS o2
 ON true
 LIMIT 1;

Source: Krzysztof

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://medium.com/kkempin/postgresqls-lateral-join-bfd6bd0199df

15-721 (Spring 2024)

LATERAL JOIN: EXAMPLE

Example: Retrieve the first
user that has made at least
two purchases along with
the timestamps of the first
and next orders.

20

SELECT user_id, first_order, next_order, id
 FROM (SELECT user_id,
 MIN(created) AS first_order
 FROM orders GROUP BY user_id) AS o1
 INNER JOIN LATERAL
 (SELECT id, created AS next_order
 FROM orders
 WHERE user_id = o1.user_id
 AND created > o1.first_order
 ORDER BY created ASC LIMIT 1) AS o2
 ON true
 LIMIT 1;

Source: Krzysztof

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://medium.com/kkempin/postgresqls-lateral-join-bfd6bd0199df

15-721 (Spring 2024)

FROID OVERVIEW

Step #1 – Transform Statements

Step #2 – Break UDF into Regions

Step #3 – Merge Expressions

Step #4 – Inline UDF Expression into Query

Step #5 – Run Updated Query through Optimizer

21

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SET @level = 'Regular';

SELECT @total = SUM(o_totalprice)
 FROM orders
 WHERE o_custkey=@ckey;

IF (@total > 1000000)
 SET @level = 'Platinum';

Imperative Statements

SELECT 'Regular' AS level;

SELECT (
 SELECT SUM(o_totalprice)
 FROM orders
 WHERE o_custkey=@ckey
) AS total;

SELECT (
 CASE WHEN total > 1000000
 THEN 'Platinum'
 ELSE NULL
 END) AS level;

SQL Statements

STEP #1: TRANSFORM STATEMENTS

22

Source: Karthik Ramachandra

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.microsoft.com/en-us/research/people/karam/

15-721 (Spring 2024)

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
 DECLARE @total float;
 DECLARE @level char(10);

 SELECT @total = SUM(o_totalprice)
 FROM orders WHERE o_custkey=@ckey;

 IF (@total > 1000000)
 SET @level = 'Platinum';
 ELSE
 SET @level = 'Regular';

 RETURN @level;
END

1

STEP #2: BREAK INTO REGIONS

23

(SELECT NULL AS level,
 (SELECT SUM(o_totalprice)
 FROM orders
 WHERE o_custkey=@ckey) AS total
) AS E_R1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
 DECLARE @total float;
 DECLARE @level char(10);

 SELECT @total = SUM(o_totalprice)
 FROM orders WHERE o_custkey=@ckey;

 IF (@total > 1000000)
 SET @level = 'Platinum';
 ELSE
 SET @level = 'Regular';

 RETURN @level;
END

1

STEP #2: BREAK INTO REGIONS

23

(SELECT NULL AS level,
 (SELECT SUM(o_totalprice)
 FROM orders
 WHERE o_custkey=@ckey) AS total
) AS E_R1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
 DECLARE @total float;
 DECLARE @level char(10);

 SELECT @total = SUM(o_totalprice)
 FROM orders WHERE o_custkey=@ckey;

 IF (@total > 1000000)
 SET @level = 'Platinum';
 ELSE
 SET @level = 'Regular';

 RETURN @level;
END

1

2

STEP #2: BREAK INTO REGIONS

23

(SELECT NULL AS level,
 (SELECT SUM(o_totalprice)
 FROM orders
 WHERE o_custkey=@ckey) AS total
) AS E_R1

(SELECT (
 CASE WHEN E_R1.total > 1000000
 THEN 'Platinum'
 ELSE E_R1.level END) AS level
) AS E_R2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
 DECLARE @total float;
 DECLARE @level char(10);

 SELECT @total = SUM(o_totalprice)
 FROM orders WHERE o_custkey=@ckey;

 IF (@total > 1000000)
 SET @level = 'Platinum';
 ELSE
 SET @level = 'Regular';

 RETURN @level;
END

1

2

STEP #2: BREAK INTO REGIONS

23

3

(SELECT NULL AS level,
 (SELECT SUM(o_totalprice)
 FROM orders
 WHERE o_custkey=@ckey) AS total
) AS E_R1

(SELECT (
 CASE WHEN E_R1.total > 1000000
 THEN 'Platinum'
 ELSE E_R1.level END) AS level
) AS E_R2

(SELECT (
 CASE WHEN E_R1.total <= 1000000
 THEN 'Regular'
 ELSE E_R2.level END) AS level
) AS E_R3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
 DECLARE @total float;
 DECLARE @level char(10);

 SELECT @total = SUM(o_totalprice)
 FROM orders WHERE o_custkey=@ckey;

 IF (@total > 1000000)
 SET @level = 'Platinum';
 ELSE
 SET @level = 'Regular';

 RETURN @level;
END

1

2

STEP #2: BREAK INTO REGIONS

23

3

4

(SELECT NULL AS level,
 (SELECT SUM(o_totalprice)
 FROM orders
 WHERE o_custkey=@ckey) AS total
) AS E_R1

(SELECT (
 CASE WHEN E_R1.total > 1000000
 THEN 'Platinum'
 ELSE E_R1.level END) AS level
) AS E_R2

(SELECT (
 CASE WHEN E_R1.total <= 1000000
 THEN 'Regular'
 ELSE E_R2.level END) AS level
) AS E_R3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

STEP #3: MERGE EXPRESSIONS

24

SELECT E_R3.level FROM
 (SELECT NULL AS level,
 (SELECT SUM(o_totalprice)
 FROM orders
 WHERE o_custkey=@ckey) AS total
) AS E_R1
CROSS APPLY
 (SELECT (
 CASE WHEN E_R1.total > 1000000
 THEN 'Platinum'
 ELSE E_R1.level END) AS level
) AS E_R2
CROSS APPLY
 (SELECT (
 CASE WHEN E_R1.total <= 1000000
 THEN 'Regular'
 ELSE E_R2.level END) AS level
) AS E_R3;

(SELECT NULL AS level,
 (SELECT SUM(o_totalprice)
 FROM orders
 WHERE o_custkey=@ckey) AS total
) AS E_R1

(SELECT (
 CASE WHEN E_R1.total > 1000000
 THEN 'Platinum'
 ELSE E_R1.level END) AS level
) AS E_R2

(SELECT (
 CASE WHEN E_R1.total <= 1000000
 THEN 'Regular'
 ELSE E_R2.level END) AS level
) AS E_R3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

STEP #3: MERGE EXPRESSIONS

24

SELECT E_R3.level FROM
 (SELECT NULL AS level,
 (SELECT SUM(o_totalprice)
 FROM orders
 WHERE o_custkey=@ckey) AS total
) AS E_R1
CROSS APPLY
 (SELECT (
 CASE WHEN E_R1.total > 1000000
 THEN 'Platinum'
 ELSE E_R1.level END) AS level
) AS E_R2
CROSS APPLY
 (SELECT (
 CASE WHEN E_R1.total <= 1000000
 THEN 'Regular'
 ELSE E_R2.level END) AS level
) AS E_R3;

(SELECT NULL AS level,
 (SELECT SUM(o_totalprice)
 FROM orders
 WHERE o_custkey=@ckey) AS total
) AS E_R1

(SELECT (
 CASE WHEN E_R1.total > 1000000
 THEN 'Platinum'
 ELSE E_R1.level END) AS level
) AS E_R2

(SELECT (
 CASE WHEN E_R1.total <= 1000000
 THEN 'Regular'
 ELSE E_R2.level END) AS level
) AS E_R3

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

STEP #4: INLINE EXPRESSION

25

SELECT c_custkey,
 cust_level(c_custkey)
FROM customer

Original Query SELECT c_custkey, (
 SELECT E_R3.level FROM
 (SELECT NULL AS level,
 (SELECT SUM(o_totalprice)
 FROM orders
 WHERE o_custkey=@ckey) AS total
) AS E_R1
 CROSS APPLY
 (SELECT (
 CASE WHEN E_R1.total > 1000000
 THEN 'Platinum'
 ELSE E_R1.level END) AS level
) AS E_R2
 CROSS APPLY
 (SELECT (
 CASE WHEN E_R1.total <= 1000000
 THEN 'Regular'
 ELSE E_R2.level END) AS level
) AS E_R3;
) FROM customer;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

STEP #4: INLINE EXPRESSION

25

SELECT c_custkey,
 cust_level(c_custkey)
FROM customer

Original Query SELECT c_custkey, (
 SELECT E_R3.level FROM
 (SELECT NULL AS level,
 (SELECT SUM(o_totalprice)
 FROM orders
 WHERE o_custkey=@ckey) AS total
) AS E_R1
 CROSS APPLY
 (SELECT (
 CASE WHEN E_R1.total > 1000000
 THEN 'Platinum'
 ELSE E_R1.level END) AS level
) AS E_R2
 CROSS APPLY
 (SELECT (
 CASE WHEN E_R1.total <= 1000000
 THEN 'Regular'
 ELSE E_R2.level END) AS level
) AS E_R3;
) FROM customer;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

STEP #5: OPTIMIZE

26

SELECT c_custkey, (
 SELECT E_R3.level FROM
 (SELECT NULL AS level,
 (SELECT SUM(o_totalprice)
 FROM orders
 WHERE o_custkey=@ckey) AS total
) AS E_R1
 CROSS APPLY
 (SELECT (
 CASE WHEN E_R1.total > 1000000
 THEN 'Platinum'
 ELSE E_R1.level END) AS level
) AS E_R2
 CROSS APPLY
 (SELECT (
 CASE WHEN E_R1.total <= 1000000
 THEN 'Regular'
 ELSE E_R2.level END) AS level
) AS E_R3;
) FROM customer;

SELECT c.c_custkey,
 CASE WHEN e.total > 1000000
 THEN 'Platinum'
 ELSE 'Regular'
 END
 FROM customer c LEFT OUTER JOIN
 (SELECT o_custkey,
 SUM(o_totalprice) AS total
 FROM order GROUP BY o_custkey
) AS e
 ON c.c_custkey=e.o_custkey;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

BONUS OPTIMIZATIONS

27

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
 DECLARE @val char(10);
 IF (@x > 1000)
 SET @val = 'high';
 ELSE
 SET @val = 'low';
 RETURN @val + ' value';
END SELECT getVal(5000);

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

BONUS OPTIMIZATIONS

27

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
 DECLARE @val char(10);
 IF (@x > 1000)
 SET @val = 'high';
 ELSE
 SET @val = 'low';
 RETURN @val + ' value';
END

Dynamic Slicing
Constant Propagation

& Folding
Dead Code

Elimination
SELECT returnVal FROM
 (SELECT CASE WHEN @x > 1000
 THEN 'high'
 ELSE 'low' END AS val)
 AS E_R1
OUTER APPLY
 (SELECT DT1.val + ' value'
 AS returnVal) E_R2

BEGIN
 DECLARE @val char(10);
 SET @val = 'high';
 RETURN @val + ' value';
END

SELECT returnVal FROM
 (SELECT 'high' AS val)
 AS E_R1
 OUTER APPLY
 (SELECT DT1.val +
 ' value'
 AS returnVal)
 AS E_R2

BEGIN
 DECLARE @val char(10);
 SET @val = 'high value';
 RETURN @val;
END

SELECT returnVal FROM
 (SELECT 'high value'
 AS returnVal)
 AS E_R1

Inline

BEGIN
 RETURN 'high value';
END

SELECT 'high value';

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SUPPORTED OPERATIONS (2019)

T-SQL Syntax:
→ DECLARE, SET (variable declaration, assignment)
→ SELECT (SQL query, assignment)
→ IF / ELSE / ELSE IF (arbitrary nesting)
→ RETURN (multiple occurrences)
→ EXISTS, NOT EXISTS, ISNULL, IN, … (Other relational

algebra operations)

UDF invocation (nested/recursive with
configurable depth)

All SQL datatypes.

28

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

FROID UDF IMPROVEMENT STUDY

29

0.1

10

1000

Table: 100k Tuples

0.1

10

1000

Im
pr

ov
em

en
t F

ac
to

r

Azure Workload #2

Azure Workload #1

Source: Karthik Ramachandra

of Scalar UDFs 90

Froid Compatible 82 (91%)

of Scalar UDFs 178

Froid Compatible 150 (85%)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.microsoft.com/en-us/research/people/karam/

15-721 (Spring 2024)

FROID UDF IMPROVEMENT STUDY

29

0.1

10

1000

Table: 100k Tuples

0.1

10

1000

Im
pr

ov
em

en
t F

ac
to

r

Azure Workload #2

Azure Workload #1

Source: Karthik Ramachandra

of Scalar UDFs 90

Froid Compatible 82 (91%)

of Scalar UDFs 178

Froid Compatible 150 (85%)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.microsoft.com/en-us/research/people/karam/

15-721 (Spring 2024)

FROID UDF IMPROVEMENT STUDY

29

0.1

10

1000

Table: 100k Tuples

0.1

10

1000

Im
pr

ov
em

en
t F

ac
to

r

Azure Workload #2

Azure Workload #1

Source: Karthik Ramachandra

of Scalar UDFs 90

Froid Compatible 82 (91%)

of Scalar UDFs 178

Froid Compatible 150 (85%)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.microsoft.com/en-us/research/people/karam/

15-721 (Spring 2024)

FROID UDF IMPROVEMENT STUDY

29

0.1

10

1000

Table: 100k Tuples

0.1

10

1000

Im
pr

ov
em

en
t F

ac
to

r

Azure Workload #2

Azure Workload #1

Source: Karthik Ramachandra

of Scalar UDFs 90

Froid Compatible 82 (91%)

of Scalar UDFs 178

Froid Compatible 150 (85%)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.microsoft.com/en-us/research/people/karam/

15-721 (Spring 2024)

APFEL: UDFs-TO-CTEs

Rewrite UDFs into plain SQL commands.

Use recursive common table expressions (CTEs) to
support iterations and other control flow concepts
not supported in Froid.

Implemented as a rewrite middleware layer on top
of any DBMS that supports CTEs.
→ Online Demo: https://apfel-db.cs.uni-tuebingen.de/

30

COMPILING PL/SQL AWAY
CIDR 2020

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://apfel-db.cs.uni-tuebingen.de/
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf

15-721 (Spring 2024)

APFEL: UDFs-TO-CTEs OVERVIEW

Step #1 – Static Single Assignment Form

Step #2 – Administrative Normal Form

Step #3 – Mutual to Direct Recursion

Step #4 – Tail Recursion to WITH RECURSIVE

Step #5 – Run Through Query Optimizer

31

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Static_single_assignment_form
https://en.wikipedia.org/wiki/A-normal_form

15-721 (Spring 2024)

STEP #1: STATIC SINGLE ASSIGNMENT

32

CREATE FUNCTION pow(x int, n int)
RETURNS int AS
$$
 DECLARE
 i int = 0;
 p int = 1;
 BEGIN
 WHILE i < n LOOP
 p = p * x;
 i = i + 1;
 END LOOP;
 RETURN p;
 END;
$$

Source: Torsten Grust

pow(x,n):
 i0 ← 0;
 p0 ← 0;
 while: i1 ← Φ(i0,i2);
 p1 ← Φ(p0,p2);
 if i1 < n then
 goto loop;
 else
 goto exit;
 loop: p2 ← p1 * x;
 i2 ← i1 + 1;
 goto while;
 exit: return p1;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

15-721 (Spring 2024)

STEP #2: ADMINISTRATIVE NORMAL FORM

33

Source: Torsten Grust

pow(x,n) =
 let i0 = 0 in
 let p0 = 1 in
 while(i0,p0,x,n)

while(i1,p1,x,n) =
 let t0 = i1 >= n in
 if t0 then p1
 else body(i1,p1,x,n)

body(i1,p1,x,n) =
 let p2 = p1 * x in
 let i2 = i1 + 1 in
 while(i2,p2,x,n)

pow(x,n):
 i0 ← 0;
 p0 ← 0;
 while: i1 ← Φ(i0,i2);
 p1 ← Φ(p0,p2);
 if i1 < n then
 goto loop;
 else
 goto exit;
 loop: p2 ← p1 * x;
 i2 ← i1 + 1;
 goto while;
 exit: return p1;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

15-721 (Spring 2024)

STEP #3: MUTUAL TO DIRECT RECURSION

34

Source: Torsten Grust

pow(x,n) =
 let i0 = 0 in
 let p0 = 1 in
 run(i0,p0,x,n)

run(i1,p1,x,n) =
 let t0 = i1 >= n in
 if t0 then p1
 else
 let p2 = p1 * x in
 let i2 = i1 + 1 in
 run(i2,p2,x,n)

pow(x,n) =
 let i0 = 0 in
 let p0 = 1 in
 while(i0,p0,x,n)

while(i1,p1,x,n) =
 let t0 = i1 >= n in
 if t0 then p1
 else body(i1,p1,x,n)

body(i1,p1,x,n) =
 let p2 = p1 * x in
 let i2 = i1 + 1 in
 while(i2,p2,x,n)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

15-721 (Spring 2024)

pow(x,n) =
 let i0 = 0 in
 let p0 = 1 in
 run(i0,p0,x,n)

run(i1,p1,x,n) =
 let t0 = i1 >= n in
 if t0 then p1
 else
 let p2 = p1 * x in
 let i2 = i1 + 1 in
 run(i2,p2,x,n)

STEP #4: WITH RECURSIVE

35

Source: Torsten Grust

WITH RECURSIVE
 run("call?",i1,p1,x,n,result) AS (

 SELECT true,0,1,x,n,NULL

 UNION ALL
 SELECT iter.* FROM run, LATERAL (

 SELECT false,0,0,0,0,p1
 WHERE i1 >= n
 UNION ALL
 SELECT true,i1+1,p1*x,x,n,0
 WHERE i1 < n

) AS iter("call?",i1,p1,x,n,result)
 WHERE run."call?"
)
SELECT * FROM run;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

15-721 (Spring 2024)

pow(x,n) =
 let i0 = 0 in
 let p0 = 1 in
 run(i0,p0,x,n)

run(i1,p1,x,n) =
 let t0 = i1 >= n in
 if t0 then p1
 else
 let p2 = p1 * x in
 let i2 = i1 + 1 in
 run(i2,p2,x,n)

STEP #4: WITH RECURSIVE

35

Source: Torsten Grust

WITH RECURSIVE
 run("call?",i1,p1,x,n,result) AS (

 SELECT true,0,1,x,n,NULL

 UNION ALL
 SELECT iter.* FROM run, LATERAL (

 SELECT false,0,0,0,0,p1
 WHERE i1 >= n
 UNION ALL
 SELECT true,i1+1,p1*x,x,n,0
 WHERE i1 < n

) AS iter("call?",i1,p1,x,n,result)
 WHERE run."call?"
)
SELECT * FROM run;

1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

15-721 (Spring 2024)

pow(x,n) =
 let i0 = 0 in
 let p0 = 1 in
 run(i0,p0,x,n)

run(i1,p1,x,n) =
 let t0 = i1 >= n in
 if t0 then p1
 else
 let p2 = p1 * x in
 let i2 = i1 + 1 in
 run(i2,p2,x,n)

STEP #4: WITH RECURSIVE

35

Source: Torsten Grust

WITH RECURSIVE
 run("call?",i1,p1,x,n,result) AS (

 SELECT true,0,1,x,n,NULL

 UNION ALL
 SELECT iter.* FROM run, LATERAL (

 SELECT false,0,0,0,0,p1
 WHERE i1 >= n
 UNION ALL
 SELECT true,i1+1,p1*x,x,n,0
 WHERE i1 < n

) AS iter("call?",i1,p1,x,n,result)
 WHERE run."call?"
)
SELECT * FROM run;

1

2

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

15-721 (Spring 2024)

UDFs-TO-CTEs EVALUATION

36

POW UDF on Postgres v11.3

0

1500

3000

4500

10 20 30 40 50 60 70 80 90 100

R
u

n
 T

im
e

(m
s)

of Iterations (×1000)

PL/SQL CTE

Source: Torsten Grust

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

15-721 (Spring 2024)

UDF BATCHING

Transform UDF statements into UPDATE queries
that operate on a temporary table representing the
state of variables in the UDF.
→ Each tuple in the state table corresponds to one input tuple

to the UDF.

This method is suitable for DBMSs that are unable
to decorrelate any possible subquery.

37

DEAR USER-

TO MAKE OUR RELATIONSHIP WORK. SINCERELY, SQL
CIDR 2024

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf

15-721 (Spring 2024)

Source: Kai Franz

UDF BATCHING

UDF 20b from ProcBench

38

CREATE FUNCTION getManufact(item_id INT)
 RETURNS CHAR(50) AS $$
 DECLARE
 man CHAR(50); cnt1 INT; cnt2 INT;
 BEGIN
 man := '';
 cnt1 := (SELECT COUNT(*)
 FROM store_sales_history, date_dim
 WHERE ss_item_sk = item_id
 AND d_date_sk = ss_sold_date_sk
 AND d_year = 2023);
 cnt2 := (SELECT COUNT(*)
 FROM catalog_sales_history, date_dim
 WHERE cs_item_sk = item_id
 AND d_date_sk = cs_sold_date_sk
 AND d_year = 2023);
 IF (cnt1 > 0 AND cnt2 > 0)
 THEN man := (SELECT i_manufact FROM item
 WHERE i_item_sk = item_id);
 ELSE man := 'outdated item';
 END IF;
 RETURN man;
 END $$ LANGUAGE PLPGSQL;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/kai-franz
https://github.com/microsoft/SQL-ProcBench

15-721 (Spring 2024)

Source: Kai Franz

UDF BATCHING

UDF 20b from ProcBench

38

CREATE FUNCTION getManufact(item_id INT)
 RETURNS CHAR(50) AS $$
 DECLARE
 man CHAR(50); cnt1 INT; cnt2 INT;
 BEGIN
 man := '';
 cnt1 := (SELECT COUNT(*)
 FROM store_sales_history, date_dim
 WHERE ss_item_sk = item_id
 AND d_date_sk = ss_sold_date_sk
 AND d_year = 2023);
 cnt2 := (SELECT COUNT(*)
 FROM catalog_sales_history, date_dim
 WHERE cs_item_sk = item_id
 AND d_date_sk = cs_sold_date_sk
 AND d_year = 2023);
 IF (cnt1 > 0 AND cnt2 > 0)
 THEN man := (SELECT i_manufact FROM item
 WHERE i_item_sk = item_id);
 ELSE man := 'outdated item';
 END IF;
 RETURN man;
 END $$ LANGUAGE PLPGSQL;

Q1

Q2

Q3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/kai-franz
https://github.com/microsoft/SQL-ProcBench

15-721 (Spring 2024)

Source: Kai Franz

UDF BATCHING

UDF 20b from ProcBench

38

CREATE FUNCTION getManufact(item_id INT)
 RETURNS CHAR(50) AS $$
 DECLARE
 man CHAR(50); cnt1 INT; cnt2 INT;
 BEGIN
 man := '';
 cnt1 := (SELECT COUNT(*)
 FROM store_sales_history, date_dim
 WHERE ss_item_sk = item_id
 AND d_date_sk = ss_sold_date_sk
 AND d_year = 2023);
 cnt2 := (SELECT COUNT(*)
 FROM catalog_sales_history, date_dim
 WHERE cs_item_sk = item_id
 AND d_date_sk = cs_sold_date_sk
 AND d_year = 2023);
 IF (cnt1 > 0 AND cnt2 > 0)
 THEN man := (SELECT i_manufact FROM item
 WHERE i_item_sk = item_id);
 ELSE man := 'outdated item';
 END IF;
 RETURN man;
 END $$ LANGUAGE PLPGSQL;

SELECT ws_item_sk
 FROM (SELECT ws_item_sk, COUNT(*) AS cnt
 FROM web_sales
 GROUP BY ws_item_sk
 ORDER BY cnt DESC, ws_item_sk
 LIMIT 25000) AS t1
WHERE getManufact(ws_item_sk) = 'CompanyX';

Q1

Q2

Q3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/kai-franz
https://github.com/microsoft/SQL-ProcBench

15-721 (Spring 2024)

Source: Kai Franz

UDF BATCHING

UDF 20b from ProcBench

38

CREATE FUNCTION getManufact(item_id INT)
 RETURNS CHAR(50) AS $$
 DECLARE
 man CHAR(50); cnt1 INT; cnt2 INT;
 BEGIN
 man := '';
 cnt1 := (SELECT COUNT(*)
 FROM store_sales_history, date_dim
 WHERE ss_item_sk = item_id
 AND d_date_sk = ss_sold_date_sk
 AND d_year = 2023);
 cnt2 := (SELECT COUNT(*)
 FROM catalog_sales_history, date_dim
 WHERE cs_item_sk = item_id
 AND d_date_sk = cs_sold_date_sk
 AND d_year = 2023);
 IF (cnt1 > 0 AND cnt2 > 0)
 THEN man := (SELECT i_manufact FROM item
 WHERE i_item_sk = item_id);
 ELSE man := 'outdated item';
 END IF;
 RETURN man;
 END $$ LANGUAGE PLPGSQL;

SELECT ws_item_sk
 FROM (SELECT ws_item_sk, COUNT(*) AS cnt
 FROM web_sales
 GROUP BY ws_item_sk
 ORDER BY cnt DESC, ws_item_sk
 LIMIT 25000) AS t1
WHERE getManufact(ws_item_sk) = 'CompanyX';

Q1

Q2

Q3

Q4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/kai-franz
https://github.com/microsoft/SQL-ProcBench

15-721 (Spring 2024)

Source: Kai Franz

UDF BATCHING

UDF 20b from ProcBench

38

CREATE FUNCTION getManufact(item_id INT)
 RETURNS CHAR(50) AS $$
 DECLARE
 man CHAR(50); cnt1 INT; cnt2 INT;
 BEGIN
 man := '';
 cnt1 := (SELECT COUNT(*)
 FROM store_sales_history, date_dim
 WHERE ss_item_sk = item_id
 AND d_date_sk = ss_sold_date_sk
 AND d_year = 2023);
 cnt2 := (SELECT COUNT(*)
 FROM catalog_sales_history, date_dim
 WHERE cs_item_sk = item_id
 AND d_date_sk = cs_sold_date_sk
 AND d_year = 2023);
 IF (cnt1 > 0 AND cnt2 > 0)
 THEN man := (SELECT i_manufact FROM item
 WHERE i_item_sk = item_id);
 ELSE man := 'outdated item';
 END IF;
 RETURN man;
 END $$ LANGUAGE PLPGSQL;

SELECT ws_item_sk
 FROM (SELECT ws_item_sk, COUNT(*) AS cnt
 FROM web_sales
 GROUP BY ws_item_sk
 ORDER BY cnt DESC, ws_item_sk
 LIMIT 25000) AS t1
WHERE getManufact(ws_item_sk) = 'CompanyX';

Q1

Q2

Q3

CREATE TEMPORARY TABLE state (
 item INT, man CHAR(50), cnt1 INT, cnt2 INT, p BOOLEAN,
 res CHAR(50),returned BOOLEAN DEFAULT false, mult INT);

INSERT INTO state (item, mult)
 SELECT ws_item_sk, COUNT(*) AS mult
 FROM (Q4)
 GROUP BY ws_item_sk;

UPDATE state SET man = '' WHERE NOT returned;
UPDATE state SET cnt1 = (Q1) WHERE NOT returned;
UPDATE state SET cnt2 = (Q2) WHERE NOT returned;
UPDATE state SET p = COALESCE(cnt1>0 AND cnt2>0, FALSE)
 WHERE NOT returned;
UPDATE state SET man = (Q3) WHERE NOT returned AND p;
UPDATE state SET result = man, returned = true
 WHERE NOT returned AND p;
UPDATE state SET man = 'outdated item'
 WHERE NOT returned AND NOT p;
UPDATE state SET res = man, returned = true
 WHERE NOT returned AND NOT p;

SELECT s.item FROM state AS s,
LATERAL generate_series(1, s.mult)
 WHERE s.res = 'CompanyX';

Q4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/kai-franz
https://github.com/microsoft/SQL-ProcBench

15-721 (Spring 2024)

PROCEDURAL EXTENSIONS OF SQL

Microsoft team published an analysis of real world
UDFs, TVFs, Triggers and Stored Procedures.

Also released an open-source benchmark based on
their analysis called SQL ProcBench.
→ Authors argue that ProcBench faithfully represents real

world workloads

39

PROCEDURAL EXTENSIONS OF SQL:
UNDERSTANDING THEIR USAGE IN THE WILD
VLDB 2021

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://github.com/microsoft/SQL-ProcBench
https://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf
https://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf

15-721 (Spring 2024)

SCALAR UDFS IN PROCBENCH

UDF invoked once

No substantial performance

advantage with UDF Inlining

40

SELECT maxReturnReasonWeb();

UDFs with No Parameters

CREATE FUNCTION maxReturnReasonWeb()
RETURNS char(100) AS
BEGIN
 DECLARE @reason_desc char(100);

 SELECT @reason_desc
 FROM …;

 RETURN @reason_desc;
END

Source: Sam Arch

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://samarch.xyz/

15-721 (Spring 2024)

SCALAR UDFS IN THE PROCBENCH

UDF invoked per customer

Implicit join between tables

Huge performance win with
inlining by “decorrelating”
the subquery

41

SELECT cust_level(customer_id)
 FROM customer;

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
 DECLARE @total float;
 DECLARE @level char(10);

 SELECT @total = SUM(o_totalprice)
 FROM orders WHERE o_custkey=@ckey;

 IF (@total > 1000000)
 SET @level = 'Platinum';
 ELSE
 SET @level = 'Regular';

 RETURN @level;
END

UDFs with Parameters

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

UDF BATCHING VS. INLINING

42

DEAR USER-

TO MAKE OUR RELATIONSHIP WORK. SINCERELY, SQL
CIDR 2024

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf

15-721 (Spring 2024)

UDF BATCHING VS. INLINING

42

DEAR USER-

TO MAKE OUR RELATIONSHIP WORK. SINCERELY, SQL
CIDR 2024

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf

15-721 (Spring 2024)

UDF BATCHING VS. INLINING

42

DEAR USER-

TO MAKE OUR RELATIONSHIP WORK. SINCERELY, SQL
CIDR 2024

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf
https://15721.courses.cs.cmu.edu/spring2023/files/final/flateral.pdf

15-721 (Spring 2024)

UDF BATCHING VS. INLINING

42

DEAR USER-

TO MAKE OUR RELATIONSHIP WORK. SINCERELY, SQL
CIDR 2024

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf
https://15721.courses.cs.cmu.edu/spring2023/files/final/flateral.pdf
https://github.com/duckdb/duckdb/pull/7528

15-721 (Spring 2024)

UDF BATCHING VS. INLINING

42

DEAR USER-

TO MAKE OUR RELATIONSHIP WORK. SINCERELY, SQL
CIDR 2024

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf
https://db.cs.cmu.edu/papers/2024/p13-franz.pdf

15-721 (Spring 2024)

DECORRELATION OF SUBQUERIES (MSSQL)

Execute the rewrite rules
where applicable

Some rewrites may require
duplicating subexpressions
in the query plan tree (and
are cost-based decisions)

43

ORTHOGONAL OPTIMIZATION OF SUBQUERIES
AND AGGREGATION
SIGMOD 2001

Algebraic rewrite rules for APPLY

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf
https://sigmodrecord.org/publications/sigmodRecord/0106/pdfs/Orthogonal%20Optimization%20of%20Subqueries%20and%20Aggregation.pdf

15-721 (Spring 2024)

DECORRELATION OF SUBQUERIES (GERMANS)

Introduces a new
“Dependent Join” operator
into the Query Plan DAG

Systematically decorrelates
any subquery

44

Dependent Join Operator

UNNESTING ARBITRARY QUERIES
BTW 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf
https://cs.emis.de/LNI/Proceedings/Proceedings241/383.pdf

15-721 (Spring 2024)

PARTING THOUGHTS

This is huge. You rarely get 500x speed up without
either switching to a new DBMS or rewriting your
application.

But the DBMS must support German-style (aka
HyPer) sub-query decorrelation.

Another optimization approach is to compile the
UDF into machine code.
→ This does not solve the optimizer's cost model problem.

45

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

NEXT CLASS

Database Networking Protocols

And a little bit about kernel bypass methods…

46

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

	Introduction
	Slide 1: User-Defined Functions
	Slide 2: LAST CLASS
	Slide 3: EMBEDDED DATABASE LOGIC
	Slide 4: EMBEDDED DATABASE LOGIC
	Slide 5: USER-DEFINED FUNCTIONS
	Slide 6: USER-DEFINED FUNCTIONS
	Slide 7: USER-DEFINED FUNCTIONS
	Slide 8: TODAY’S AGENDA

	UDFs
	Slide 9: UDF: SQL FUNCTIONS
	Slide 10: UDF: SQL FUNCTIONS
	Slide 11: UDF: SQL FUNCTIONS
	Slide 12: UDF: SQL FUNCTIONS
	Slide 13: UDF: EXTERNAL PROGRAMMING LANGUAGE
	Slide 14: UDF: EXTERNAL PROGRAMMING LANGUAGE
	Slide 15: UDF ADVANTAGES
	Slide 16: UDF DISADVANTAGES (1)
	Slide 17: UDF DISADVANTAGES (2)
	Slide 18: UDF DISADVANTAGES (2)
	Slide 19: UDF DISADVANTAGES (2)
	Slide 20: UDF PERFORMANCE
	Slide 21: UDF ACCELERATION

	Inlining
	Slide 22: FROID UDF INLINING
	Slide 23: SUB-QUERIES
	Slide 24: SUB-QUERIES: REWRITE
	Slide 25: LATERAL JOIN
	Slide 26: LATERAL JOIN: EXAMPLE
	Slide 27: LATERAL JOIN: EXAMPLE
	Slide 28: FROID OVERVIEW
	Slide 29: STEP #1: TRANSFORM STATEMENTS
	Slide 30: STEP #2: BREAK INTO REGIONS
	Slide 31: STEP #2: BREAK INTO REGIONS
	Slide 32: STEP #2: BREAK INTO REGIONS
	Slide 33: STEP #2: BREAK INTO REGIONS
	Slide 34: STEP #2: BREAK INTO REGIONS
	Slide 35: STEP #3: MERGE EXPRESSIONS
	Slide 36: STEP #3: MERGE EXPRESSIONS
	Slide 37: STEP #4: INLINE EXPRESSION
	Slide 38: STEP #4: INLINE EXPRESSION
	Slide 39: STEP #5: OPTIMIZE
	Slide 40: BONUS OPTIMIZATIONS
	Slide 41: BONUS OPTIMIZATIONS
	Slide 42: SUPPORTED OPERATIONS (2019)
	Slide 43: FROID UDF IMPROVEMENT STUDY
	Slide 44: FROID UDF IMPROVEMENT STUDY
	Slide 45: FROID UDF IMPROVEMENT STUDY
	Slide 46: FROID UDF IMPROVEMENT STUDY

	German CTE
	Slide 47: APFEL: UDFs-TO-CTEs
	Slide 48: APFEL: UDFs-TO-CTEs OVERVIEW
	Slide 49: STEP #1: STATIC SINGLE ASSIGNMENT
	Slide 50: STEP #2: ADMINISTRATIVE NORMAL FORM
	Slide 51: STEP #3: MUTUAL TO DIRECT RECURSION
	Slide 52: STEP #4: WITH RECURSIVE
	Slide 53: STEP #4: WITH RECURSIVE
	Slide 54: STEP #4: WITH RECURSIVE
	Slide 55: UDFs-TO-CTEs EVALUATION

	Batching
	Slide 56: UDF BATCHING
	Slide 57: UDF BATCHING
	Slide 58: UDF BATCHING
	Slide 59: UDF BATCHING
	Slide 60: UDF BATCHING
	Slide 61: UDF BATCHING

	Challenges
	Slide 62: PROCEDURAL EXTENSIONS OF SQL
	Slide 63: SCALAR UDFS IN PROCBENCH
	Slide 64: SCALAR UDFS IN THE PROCBENCH
	Slide 65: UDF BATCHING VS. INLINING
	Slide 66: UDF BATCHING VS. INLINING
	Slide 67: UDF BATCHING VS. INLINING
	Slide 68: UDF BATCHING VS. INLINING
	Slide 69: UDF BATCHING VS. INLINING
	Slide 70: DECORRELATION OF SUBQUERIES (MSSQL)
	Slide 71: DECORRELATION OF SUBQUERIES (GERMANS)

	Conclusion
	Slide 72: PARTING THOUGHTS
	Slide 73: NEXT CLASS

