ADVANCED (@ o

DATABASE o g
SYSTEMS ‘ o8

Database
Networking

Protocols

Andy Pavlo Carnegie
1 2 cmU 15-721 Mello n
Spring 2024 University

https://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/
https://db.cs.cmu.edu/

LAST CLASS

How to inline user-defined functions into a query
so that the DBMS's optimizer can understand its

behavior and intention.
— Pushing application logic into the DBMS.

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

$2CMU-DB

15-721 (Spring 2024)

TODAY'S AGENDA

Database Access APIs
Database Network Protocols
Kernel/User Bypass Methods
Client-side Optimizations

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

$2CMU-DB

15-721 (Spring 2024)

DATABASE ACCESS

All the demos in the class have been through a

terminal client.

— SQL queries are written by hand.
— Results are printed to the terminal.

Real programs access a database through an API:
— Direct Access (DBMS-specific)

— Open Database Connectivity (ODBC)
— Java Database Connectivity (JDBC)
— Python PEP-0249

— HTTP / REST (DBMS-specific)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://peps.python.org/pep-0249/

DATABASE

n — PostgresQL 16

Documentatio
Current (18)/ 15/14/13/12

SUpPONEd Versions:
Development Versions: devel
Unsupported versions: 1 110/94619.51’9.419.31‘9.2
/9.1/9.0/84/ $3/82/81/80 174173172171
Chapter 34. libpg — C Library
Prev up part IV. Client interfaces

Chapter 34. libpq — C Library

Table of Contents

34.1. Database Connection Control Functions

34.1.1. Connection strings
34.1.2. Parameter Key Words

34.2. Connection Status Functions

34.3. Command Execution Functions
34.3.1. Main Functions
34.3.2. Retrieving Query Result Information
34.3.3. Retrieving Other Result information
34.3.4. Escaping strings for Inclusion in SQL commands

34.4, Asynchronous Command Processing

34.5. Pipeline Mode
34.5.1. Using Pipeline Mode
34.5.2. Functions Associated wi
34.5.3. When to Use pipeline Mode
34.6. Retrieving Query Results Row-by-Row
34.7. Canceling Queries in Progress
34.8. The Fast-Path Interface
34.9, Asynchronous Notificatio
34.10. Functions Associated witl

34.10.1. Functions for sending COP
for Recelving COPY Data

th Pipeline Mode

n
h the COPY Command

Y Data

34.10.2. Functions
34.10.3. Obsolete Functions for COPY
34.11. Control Functions
34.12. Miscellaneous Functions
34.13. Notice Processing
34.14. Event System

34.14.1. Event Types

search the documentation for...

Home Mext

ter

A
rif]
Ly

()

Tt

1€ world's most
ortd's most populor ope
r op

database

" Mys
YSQL 8.0 C AP] Developer Guide

Abstract

his is the My SQL 8.0 C API Dey oper Guide. This docury ent accompanies M
y:
h | Developer Guide. s docu
& C APl provides ow-level access to .

The C AP the M)
I code Is distributed with Mys YSQL cllentserver protocol and
€

QL and impleme ted Ir the Libaysqicaient Iib ary.
4y
d rary.

For g,
gal mformaticn, see the Legai N
otices,

Document
Benerated on: 2023-03-20 (revision: 7
n: 75178)

Table of Contents

:’refan:e and Legal Notices
! The MySQL € Ap|
Mys
: W::(QL C AP) Implementations
I
e '8 C APl-Based Client Applicat
Function Reference o
:EAPI Basic Interface
Al
o API Prepared Statement Interfa
! P!Asynchronouslnrerface -
: CAPI Thread Interface
9 C AP Client Plugin Interface

10 C API Bin,
ary Lo
Index Iy Log Interface

HOME NEXT »

——R_A(:l-i ® 2023 Oracle

ol

15-721 (Spring 2024)

YSQL 8.0 Reference Manual,

ables C programs ¢ ccess database contents.
b Programs to acces: it ont:

Contact MysqQL

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://peps.python.org/pep-0249/
https://dev.mysql.com/doc/c-api/8.0/en/
https://www.postgresql.org/docs/current/libpq-exec.html

DATABA|x = _

P
retend that You just got out of

PostgresqL jail. Write
database and an example C
executes a SELEC program that uses Ji
T query. es ltbpg to connect
- oa

Chat
Documentation — PostgresQL 16 . I o con GPT
supported Versions current (16)/15/14/13/12 rtainty,

Contact MysQL

here's a simple example C proy

. database gram th
Development Versions: devel and execute a SELECT query: at uses libpq to connect to a Postgres
: reSQL

Unsupponed versions: 11710/ 9.6/95/9.4/93/ 9.2
/9.1/9,0/8.41’8.318‘2:’3.118‘0/7.417.3i7.2f7,1 c lde

Chapter 34. libpg — C Library

part IV. Client interfaces Home Next

Prev up

Chapter 34. libpq — C Library

database content

Table of Contents

34.1. Database Connection Control Functions
34.1.1. Connection Strings
34.1.2. Parameter Key Words
3 Connection Status Functions
34.3. Command Execution Functions
34.3.1. Main Functions
34.3.2. Retrieving Query Result Information
34.3.3. Retrieving Other Result Information
34.3.4. Escaping Strings for Inclusion in 5QL Commands

CONNINFOQ) ;

» PQerrorMessage(

34.4, Asynchronous Command Processing
34.5. Pipeline Mode)
34.5.1. Using Pipeline Mode

34.5.2. Functions Associated with Pipeline Mode

TUPLES_0K) {

» POerTorte:

34.5.3. When to Use pipeline Mode

34.6. Retrieving Query Results Row-by-RowW

34.7. Canceling Queries in Progress

34.8. The Fast-Path Interface

34,9, Asynchronous Notification

34.10. Functions Associated with the COPY Command
34.10.1. Functions for Sending COPY Data
34.10.2. Functions for Rreceiving COPY Data
34.10.3. Obsolete Functions for COPY

34.11. Control Functions

34.12. Miscellaneous Functions

34.13. Notice Processing

34.14. Event System

<
-~ CM - 34.14.1, Event Types

15-721 (Spring 2024)

Pantupl
Pantiel,

, Tows, c

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://peps.python.org/pep-0249/
https://dev.mysql.com/doc/c-api/8.0/en/
https://www.postgresql.org/docs/current/libpq-exec.html

$2CMU-DB

15-721 (Spring 2024)

DATABASE ACCESS

All the demos in the class have been through a

terminal client.

— SQL queries are written by hand.
— Results are printed to the terminal.

Real programs access a database through an API:
— Direct Access (DBMS-specific)

— Open Database Connectivity (ODBC)
— Java Database Connectivity (JDBC)
— Python PEP-0249

— HTTP / REST (DBMS-specific)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://peps.python.org/pep-0249/

OPEN DATABASE CONNECTIVITY

Standard API for accessing a DBMS. Designed to be
independent of the DBMS and OS.

Originally developed in the early 1990s by
Microsoft and Simba Technologies.

Every major DBMS has an ODBC implementation.

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Simba_Technologies

OPEN DATABASE CONNECTIVITY

ODBC is based on the device driver model.

The driver encapsulates the logic needed to

convert a standard set of commands into the
DBMS-specific calls.

“
V)
é Request
Application § < B
8 Result
Q S— 7
Q
DBMS Wire Protocol

$2CMU-DB
111111 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Device_driver

JAVA DATABASE CONNECTIVITY

Developed by Sun Microsystems in 1997 to provide

a standard API for connecting a Java program with

a DBMS.

— JDBC can be considered a version of ODBC for the
programming language Java instead of C.

JDBC supports different client-side configurations

because there may not be a native Java driver for
each DBMS.

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

$CMU-DB

15-721 (Spring 2024)

JAVA DATABASE CONNECTIVITY

Approach #1: JDBC-ODBC Bridge €@ Removed in 2014
— Convert J]DBC method calls into ODBC function calls.

Approach #2: Native-API Driver

— Convert JDBC method calls into native calls (via JNI) of
the target DBMS APL.

Approach #3: Network-Protocol Driver

— Driver connects to a middleware in a separate process that
converts JDBC calls into a vendor-specific DBMS protocol.

Approach #4: Database-Protocol Driver €@ Best Approach

— Pure Java implementation that converts JDBC calls directly
into a vendor-specific DBMS protocol.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Java_Native_Interface

DATABASE NETWORKING PROTOCOLS 1

All major DBMSs implement their own proprietary

client wire protocol over TCP/IP,
— Use Unix domain sockets if running on same box as app.
— Andy doesn't know of any DBMS using UDP for clients.

A typical client/server interaction:

— Client connects to DBMS and begins authentication
process. There may be an SSL/TLS handshake.

— Client then sends a query.

— DBMS executes the query, then serializes the results and
sends it back to the client.

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.morling.dev/blog/talking-to-postgres-through-java-16-unix-domain-socket-channels/

EXISTING PROTOCOLS

Most newer systems implement one of the open-
source DBMS wire protocols. This allows them to
reuse the client drivers without having to develop
and support them.

Just because on DBMS "speaks" another DBMS's

wire protocol does not mean that it is compatible.

— Need to also support catalogs, SQL dialect, and other
functionality.

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

EXISTING PROTOCOLS

NMysaL.

QO singlestore | Clustrix
=% actorps m TiDB

$B)ICLEARDB

Amazon
Aurora

ClickHouse $ DORIS
Wolanetscale Polarp)B

*)." STARDOG

$CMU-DB

15-721 (Spring 2024)

F’ostgreSQl_
[l NEON (©) iy

. amazon A HyPer

REDSHIFT
VERTICA § CockroachDB
(=
(3 UMBRA
“” yugabyteDB
Amazon

=l CrateDB Aurora

N Materialize “ircadeDB
QQuestDB

Yellowbrick ¢g

&P redis

" ApAcHE

%, GEODE (’

S curiodb
rosedb i
Kvrocks Dragonf!
SoTendis @ KeyDB
SUMMIT|DB
I
{E} %C/—\CHEGRAND
/7 44y DB

[/Serverless Redis

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

PROTOCOL DESIGN SPACE

Row vs. Column Layout
Compression

Data Serialization
String Handling

=5.|DON'T HOLD MY DATA HOSTAGE: A CASE FOR
CLIENT PROTOCOL REDESIGN
VLDB 2017

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/citation.cfm?id=3115408
http://dl.acm.org/citation.cfm?id=2005619

ROW VS. COLUMN LAYOUT

String sgl = "SELECT * FROM xxx";

. Statement stmt = conn.createStatement();
ODBC/JDBC are rOW'Orlented APIS- ResultSet rs = stmt.executeQuery(sql);
. hil .
— Server packages tuples into messages one O e ot ron by o
: rs.getInt(1);
tUPle ata tlnfle'_) rs.getString(2);
— Client deserializes data one tuple at a time. \ VSR

stmt.close();

But switching to a column-oriented String sql = 'SELECT « FROM xxx!;

Statement stmt = conn.createStatement();

S 3 ResultS = . 1);
API is a bad too because client may hile oy pecuteuery(sab)
access multiple columns for a tuple. o e o i
rs.getValue();
}
}

stmt.close(); Not Real JDBC Code!

Solution: Vector-oriented API

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

ROW VS.

ODBC/JDBC are row-orien
— Server packages tuples into mg¢

tuple at a time.
—> Client deserializes data one tu

But switching to a column.—
API is a bad too because clig
access multiple columns for

Solution: Vector-orient

g mgw

ARROW>>> Q

”_ > Specifications > ADBC: Arrow...

ADBC: Arrow Database Connectivity

Full Documentation on ADBC can be found at Mps:ffarrow.agache.org#adbc!.

Rationale

The Arrow ecosystem lacks standard database interfaces built around Arrow data, especially for efficiently fetching large
datasets (i.e. with minimal or no serialization and copying). Without a common AP, the end resujt is @ mix of custom protocols
(e.g. BigQuery, Snowflake) and adapters (e.g. Turbodbc) scattered across languages. Consumers must laboriously wrap
individual systems (as DB is contemplating and Trino does with connectors).

ADBC aims to provide a minimal database client Ap| standard, based on Arrow, for C, Go, and Java (with bindings for other
Ianguages}. Applications code to this API standard (in much the same way as they would with JDBC or ODBC), but fetch result

databases.

* Support both SQL dialects and the emergent Substrait standard.

* Support explicitly partitioned/distributed result sets to work better with contemporary distributed systems.

* Allow for a variety of implementations to maximize reach.

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://arrow.apache.org/docs/format/ADBC.html

$2CMU-DB

15-721 (Spring 2024)

COMPRESSION

Approach #1: Naive Compression

— DBMS applies a general-purpose compression algo (1z4,
gzip, zstd) on message chunks before transmitting.

— Examples: Oracle, MySQL, Snowflake, BigQuery

Approach #2: Columnar-Specific Encoding

— Analyze results and choose a specific compression
encoding (dictionary, RLE, delta) per column.
— No system implements this except with Arrow ADBC.

Heavyweight compression is better when network
is slow. DBMS achieves better compression ratios
for larger message chunk sizes.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://blogs.oracle.com/dbstorage/post/advanced-network-compression-a-lessor-known-feature-of-advanced-compression
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html
https://docs.snowflake.com/en/developer-guide/odbc/odbc-parameters#label-odbc-additional-connection-parameters-put-fastfail
https://cloud.google.com/bigquery/docs/api-performance

$CMU-DB

15-721 (Spring 2024)

DATA SERIALIZATION

Approach #1: Binary Encoding

— Client handles endian conversion.

— The closer the serialized format is to the DBMS's binary
format, then the lower the overhead to serialize.

— DBMS can implement its own format or rely on existing
libraries (ProtoBuffers, Thrift, FlatBuffers).

¥ Pr)t')faneDB
Approach #2: Text Encoding 123456
— Convert all binary values into strings (atoi). ‘
— Do not have to worry about endianness.))
— Missing values encoded as string "NULL" 123456

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://developers.google.com/protocol-buffers
https://en.wikipedia.org/wiki/Apache_Thrift
https://google.github.io/flatbuffers/
http://www.cplusplus.com/reference/cstdlib/atoi/

$2CMU-DB

15-721 (Spring 2024)

STRING HANDLING

Approach #1: Null Termination

— Store a null byte (' \@"') to denote the end of a string.
— Client scans the entire string to find end.

Approach #2: Length-Prefixes
— Add the length of the string at the beginning of the bytes.

Approach #3: Fixed Width

— Pad every string to be the max size of that attribute.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

NETWORK PROTOCOL PERFORMANCE

Transfer One Tuple from TCP-H LINEITEM

B MySQL+GZIP B MySQL B MonetDB B Postgres
M Oracle M MongoDB W DB2 M Hive
10 ;

S | Lower is Better
\:" o 1080
g |

= .

3 Text Encoding

12

§.. 0.1

3

0.01 -

All Other Protocols Use Binary Encoding

Source: Hannes Muhleisen

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://hannes.muehleisen.org/

NETWORK PROTOCOL PERFORMANCE

Transfer Im Tuples from TCP-H LINEITEM

[+-MySQL+GZIP -a=MySQL | -e-MonetDB —>Postgres
=¥=Oracle =¢-MongoDB -#-DB2 --Hive
o .

S | Lower is Better
N
¥ 100
RS
~ Compression overhead is bad
~ tradeof f when network is
2 10
=
q

1 [I I 1

0.1 1 10 100
Network Latency (ms)

Source: Hannes Muhleisen

£2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://hannes.muehleisen.org/

NETWORK PROTOCOL PERFORMANCE

Transfer Im Tuples from TCP-H LINEITEM

Verb !
—~MySQL+GZIP -4MySQL - MonetDB ~ =PoStares operhod ismore
d
=*=Qracle =¢-MongoDB -#-DB2 -+-Hive 52(:;’:;‘ :,ffw::k,
o .
S | Lower is Better
N~
% 100
R
~ /
~
S 10 e
S ——
= 2
1 | I I |
0.1 1 10 100
Network Latency (ms)
Source: Hannes Muhleisen

£2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://hannes.muehleisen.org/

DATA EXPORT PERFORMANCE

Transfer 7GB of Tuples from TPC-C ORDER_LINE

B Postgres M Vectorized Postgres Arrow Flight H RDMA

~1200 . 1057
S THigher is Better
2 891
S 800
N~
)
s
£ 400
= 150
S 38
s 0l e—
= o -
Transport Method

“ |MAINLINING DATABASES: SUPPORTING FAST TRANSACTIONAL
VngBRléIC-)(Z)(')ADS ON UNIVERSAL COLUMNAR DATA FILE FORMATS

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.vldb.org/pvldb/vol14/p534-li.pdf
https://www.vldb.org/pvldb/vol14/p534-li.pdf

OBSERVATION

The DBMS's network protocol implementation is
not the only source of slowdown.

The OS's TCP/IP stack is slow...

— Expensive context switches / interrupts
— Data copying
— Lots of latches in the kernel

How to avoid the OS entirely or work with it
to make our DBMS run faster.

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

KERNEL-BYPASS METHODS

Allows the system to get data directly from the NIC
into the DBMS address space.

— No unnecessary data copying.
— No OS TCP/IP stack.

Approach #1: Data Plane Development Kit
Approach #2: Remote Direct Memory Access
Approach #3: 10_uring

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

DATA PLANE DEVELOPMENT KIT (DPDK)

Set of libraries that allows programs to access NIC
directly. Treat the NIC as a bare metal device.

Requires the DBMS code to do more to manage

network stack (layers 3+4), memory, and buffers.
— Reimplement TCP/IP in usercode (e.g., F-Stack).

— No data copying.

— No system calls.

Example: ScyllaDB's Seastar, Yellowbrick's ypRPC

@ DATA PLANE DEVELOPMENT KIT

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dpdk.org/
http://www.f-stack.org/
https://seastar.io/
https://yellowbrick.com/resources/executive-overviews/engineered-for-extreme-efficiency/
https://www.dpdk.org/

DATA PLANE DEVELOPMENT KIT (DPDK)

Set of libraries that allov “ e D i

directly. Treat the NIC g feoying o @esovarers @ucs saro s s e

Requires the DBMS cod* A nasty analogy is that spdk is like peeing
your pants to keep warm. It works great for a

network stack (layers 34 few minutes, then you start regretting it.
— Reimplement TCP/IP in| 1120au-snov 2017

— No data copying. 2 0 QOPVOODE @
— No system calls. =

0 2 Q 10 4]

Example: ScyllaDB's Seastar, Yellowbrick's ypRPC

@ DATA PLANE DEVELOPMENT KIT

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dpdk.org/
http://www.f-stack.org/
https://seastar.io/
https://yellowbrick.com/resources/executive-overviews/engineered-for-extreme-efficiency/
https://twitter.com/axboe/status/927571366085246976
https://www.dpdk.org/

REMOTE DIRECT MEMORY ACCESS

Read and write memory directly on a remote host
without going through OS.

— The client needs to know the correct address of the data
that it wants to access.
— The server is unaware that memory is being accessed

remotely (i.e., no callbacks).
— InfiniBand vs. RoCE

Examples: Oracle Exadata, Microsoft FaRM

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/InfiniBand
https://en.wikipedia.org/wiki/RDMA_over_Converged_Ethernet
https://www.oracle.com/database/technologies/exadata/hardware/rdmanetwork/
https://www.microsoft.com/en-us/research/publication/farm-fast-remote-memory/

I0_URING

Linux system call interface for zero-copy

asynchronous I/O operations.

— Originally added in 2019 for accessing storage devices.
— Expanded in 2022 to support network devices.

— Windows has something similar called ICOP.

OS exposes two circular buffers (queues) to store

submission and completion I/O requests.

— DBMS submits requests for the kernel to perform
read/write operations to DBMS-provided buffers.

— When OS completes request, it puts the event on the
competition queue and invokes callback.

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports

cuesos R ING

Importing 300k rows/sec with io_uring for zero-copy
OT Zero-

O11S.
DB Engineering . d]
‘ accessing storage €VICES.
in this blog post, QuestDB's very own presents how to ingest large CSV files a lot more efficiently

.~ using the SQL statement, and takes us through th shares insights about] t network deVlceS.
| how the new improvememiamadepossibleby io_ur import versus several well- P
ilar called ICOP.

e journey of bench marking. Andrei also

ing and compares QuestDB's

' known OLAP and time-series databases in Clickhouse's ClickBench benchmark.

Introduction
_ , — _ juffers (queues) to store
As an open source time series database company, we understand that getting your existing data into the database in a
fast and convenient manner is as important as being able to and your data efficiently later on. That's why
we decided to dedicate our new release, QuestDB 6.5, to the new parallel feature. In this blog post, we . n I/ O reque StS .
discuss what paralle| Import means for our users and how it's implemented imternally. As a bonus, we also share how
recent ClickHouse team's benchmark felped us to improve both QuestDB and its demol the kernel to perfo rm

nstrated results.
BMS-provided buffers.
How ClickBench helped us improve st, it puts the event on the
Recently ClickHouse conducted a
benchmark included data import as the first s

tep. Since we were In the process of building a faster import, this 7 Okes Callb aCk.
benchmark provided us with nice test data and baseline results. So, what have we achieved? Let's find out. The
benchmark was using QuestDE's HTTP

loingest the data into an existing non-partitioned table. You
may wonder why it doesn't use a table, which stores the data serted b
many benefits for time series analysis. Most likely, th

for their own database and many others, including QuestDE, The

y the timestamp values and provides

e reason is terrible import execution time. Both HTTP-based
] — - . .

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://questdb.io/blog/2022/09/12/importing-300k-rows-with-io-uring/

QuestDB

ptember 12, 2022 - 13 min read

OB Engineering

in this blog post, QuestDB's Very owr
using the SQL statement, an
how the new improvement is made |
known OLAP and time-series databa,

Introduction

As an open source time series datalk
fast and convenient manner is asim
we decided to dedicate our new rele
discuss what paralle| Import means
recent ClickHouse team's henchmar

How ClickBench h

Recently ClickHouse conducted a
benchmark included data import as
benchmark provided us with nice teg
benchmark was using QuestDE's HT,
may wonder why it doesn't use a

many benefits for time series analys

]
15-721 (Spring 2024)

TTigerBeeﬂe Docs Blog i Slack Q) GitHub { Subscribe

A Programmer-FriendIy I/0
Abstraction Over io_uring
and kqueue

By @ King Butcher and @ Phil Eaton on Nov 23, 2022

Consider this tale of /0 and performance. We'll start with blocking 1/0, explore
fo_uring and kgueue, and take home an event loop very similar to some software you
may find famiiiar.

This is a twist on King's talk at Software You Can Love Milan 22.

Classical approach

When you want to read from a file you might open(} and then call read() as many
times as necessary to fill a buffer of bytes from the file. And in the opposite
direction, you call write() as many times as needed until everything is written. it's
similar for a TCP client with sockets, but instead of open() you first call socket ()
and then connect () to your server. Fun stuff.

In the real world though you can't always read everything you want Immediately
from a file descriptor. Nor can you always write everything you want immediately to
a file descriptor,

You can swiltch a file descriptor into non-blocking mode so the call won't block while
data you requested is not available. But system calls are still expensive, incurring
context switches and cache misses. In fact, networks and disks have become so
fast that these costs can start to approach the cost of doing the I/0 itself. For the
duration of time a file descriptor is unable to read or write, you don't want to waste
time continuously retrying read or write system calis.

4%

rage devices.
vices.

es) to store

ests.

perform
d buffers.

event on the

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://questdb.io/blog/2022/09/12/importing-300k-rows-with-io-uring/
https://tigerbeetle.com/blog/a-friendly-abstraction-over-iouring-and-kqueue/

QuestDB

Importing 3!

September 12,2022 - 13 min read

Qu OB Engineering

in this blog post, QuestDB's Very owr
using the SQL statement, an
how the new improvement is made |

known OLAP and time-series databa

Introduction

As an open source time series datalk
fast and convenient manner is asim
we decided to dedicate our new rele
discuss what paralle| Import means
recent ClickHouse team's henchmar

How ClickBench h

Recently ClickHouse conducted a
benchmark included data import as
benchmark provided us with nice teg
benchmark was using QuestDE's HT,
may wonder why it doesn't use a

many benefits for time series analys

-
15-721 (Spring 2024)

24

T TigerBeetie Docs Blog 3 Slack © GitHub

A Programmer-Friend|
Abstraction Over io_uri
and kqueue

By @ King Butcher and @ Phil Eaton on Nov 23, 2022

Consider this tale of /0 and performance. We'll start with blocking 1/}
fo_uring and kgueue, and take home an event loop very similar to som)
may find famiiiar.

This is a twist on King's talk at Software You Can Love Milan 22.

Classical approach

When you want to read from a file you might open() and then call re
times as necessary to fill a buffer of bytes from the file. And in the op,
direction, you call write() as many times as needed until everything
similar for a TCP client with sockets, but instead of open() you first ¢
and then connect () to your server. Fun stuff.

In the real world though you can't always read everything you want im
from a file descriptor. Nor can you always write everything you want i
a file descriptor,

You can swiltch a file descriptor into non-blocking mode so the call w(
data you requested is not available. But system calls are still expensi

context switches and cache misses. In fact, networks and disks have
fast that these costs can start to approach the cost of doing the I/O i

duration of time a file descriptor is unable to read or write, you don‘t

ClickHouse Product v UseCases Company v Leamn v Pricing & Signin

A journey to io_uring, AIO
and modern storage
devices

Rusian Savchenko
> Mar 8, 2021

While main memory is considered to be rather cheap by some systems designers it is not
always possible to store everything in the main memory. When data is stored in external

out how different Linux system calls perform for available devices. In total HDD, SATA 55D,
NVMe SSD, and intel Optane were accessed via single-threaded and multi-threaded pread,
Linux aio, and new io_uring interfaces. Full report is available in PDF format: link. We give one
section from the report as an example.

Single Random Read

External memory devices are block devices which means data transfer between a device and
a host is done in blocks rather than single bytes. Typically 512 bytes or 4 kilobytes blocks are

reads we calculate average, minimum and maximum latency as well as 99,0 and 99,9
percentiles. We use system call pread(2) in this experiment. We believe that Iseek(2) followed

Get Started

time continuously retrying read or write system calis.

[

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://questdb.io/blog/2022/09/12/importing-300k-rows-with-io-uring/
https://tigerbeetle.com/blog/a-friendly-abstraction-over-iouring-and-kqueue/
https://clickhouse.com/blog/a-journey-to-io_uring-aio-and-modern-storage-devices

24

C“CkHOUSE Product v Use Cases Company v Learn v Pricing & Signin

TTigerBeet}e Docs Blog & Slack Q) GitHub

A Progr ammer-Fr !endl A journey to io_uring, AIO
Abstraction Over io_ur and modern storage
and kqueue devices

By @ King Butcher and @ Phil Eaton on Nov 23, 2022

QuestDB Engineering

in this blog post, QuestDB's Very owr
using the SQL statement, an:

Rusian Savchenko
Mar 8, 2021

how the new improvement is made | Consider this tale of I/0 ang performance. We'll start w
known OLAP and time-series databa fo_uring and kqueue p—

emory is considered to be rather cheap by some systems designers it is not
le to store everything in the main memory. When data is stored in external
@s to think carefully how to access the data. There are several kind of storage
Ore than one system call to read from them, We performed experiments to find
more ent Linux system calls perform for available devices. In total HDD, SATA 55D,

t the code becomes way cof intel Optane were accessed via single-threaded and mutti-threaded pread,
rformance. Bu C++ engineer (the author © W fo_uring interfaces. Full report is available in PDF format: link. We give one
nd by our automated E report as an example.

@ alexey-milovidov

jusvl
. : ring by @sauliusv
lntrOduct|on There was an experiment adding uring

a t pro beu istai le.
tely, Itp ves to be unsu stainab
f

As an open source time seri. Unfortun

! : ntin

fast and convenient manner| isonlya marginal improveme i

T) .

e ame so complicated Ta= of queries
complicated. It bec e rare hangs

ere ar
the code) cannot figure out why th

testing before the release).

2 rienced
at even an experien

we decided to dedicate our n (fo

discuss what paralle| Import |
recent ClickHouse team's ben

ndom Read

& 3 blocks rather than single bytes. Typically 512 bytes or 4 kilobytes blocks are

How C"ckBenc] = I i best choice for modern devices. By requesing larger amount of contigious data we can

Recently ClickHouse conducteds
benchmark included data import as
benchmark provided us with nice teg

You can swiltch a file descriptor into non-blocking mode so the call w(
data you requested is not available. But system calls are still expensi ; ; R

Get Started

) ‘ context switches and cache misses. In fact, networks and disks have kilobytes up to 32 megabytes. For each block size we make some random reads. Among these
benchmark was using QuestDB's HT fast that these costs can start to approach the cost of doing the I/O i reads we calculate average, minimum and maximum latency as well as 99,0 and 99,9
may wonder why it doesn't use a duration of time a file descriptor is unable to read or write, you don't percentiles. We use system call pread(2) in this experiment, We believe that Iseek(2) followed
many benefits for time series analys time continuously retrying read or write system calls. r

]
15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://questdb.io/blog/2022/09/12/importing-300k-rows-with-io-uring/
https://tigerbeetle.com/blog/a-friendly-abstraction-over-iouring-and-kqueue/
https://clickhouse.com/blog/a-journey-to-io_uring-aio-and-modern-storage-devices
https://github.com/ClickHouse/ClickHouse/issues/10787#issuecomment-1249939496

QuestDB

Importing 3!

September 12,2022 - 13 min read

E Andrey Pechkuroy

g QuestDB Engineering

in this blog post, QuestDB's Very owr
using the SQL copy statement, an
how the new improvement is made |
known OLAP and time-series databa

Introduction

As an open source time seri.

fast and convenient manner
we decided to dedicate our n
discuss what paralle| Import |
recent ClickHouse team's ben

How ClickBenc|

Recently ClickHouse conducteds

benchmark included data import as
benchmark provided us with nice teg
benchmark was using QuestDE's HT,
may wonder why it doesn't use a par
many benefits for time series analys

T TigerBeetie

A Programmer-Friend|
Abstraction Overio_u

and kqueue
‘%p; 19 Butcher and @Pm Eator

Consider this tale of I/0 and perfomnd
fo_uring and Iu.;uc .)

- We'll start with

1€) « edited «
alexey-mi|ovidov n Sep 2

iusvl
@sauliusv
an experiment adding uring bybl
re was b
e tunately, it proves 0 be unsust: o
. t in performance. But the C

xperienced C++ €|

; vemen
: a marginal impro
There is only of queries (found

nane

licated that eve

me so comp S
icated. It beca e rare hang

CZmplde) cannot figure out why there ar

the co

testing before the release).

Q&1 9

CIiCI(HOLISE Product v Use Cases Company v Learn v Pricing & Signin Get Started

A

M ClickHouse #%
@ClL lickHouseDB

ourney to io_uring, AIO

You say io_uring. We say "a magic pill to make IO less slow"

ilovidov-desktop

ClickHouse v23.2 Release Webinar

data you requested is not available. But system raHs are still expi
context switches and cache misses. In fact, networks and disks have
fast that these costs can start to approach the cost of doing the I/O i
duration of time a file des riptor is unable to read or write, you don't
time continuously retrying read or write system calis.

12:35 PM - Feb 23,

2023 - 1473 Views

kilobytes up to 32 megabytes. For each block size we o
reads we calculate average, minimum and maximum latency as well as 99 0 and 9"* 9
percentiles. We use system call pread(2) in this experiment. We believe that Iseek(2) followed

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://questdb.io/blog/2022/09/12/importing-300k-rows-with-io-uring/
https://tigerbeetle.com/blog/a-friendly-abstraction-over-iouring-and-kqueue/
https://clickhouse.com/blog/a-journey-to-io_uring-aio-and-modern-storage-devices
https://github.com/ClickHouse/ClickHouse/issues/10787#issuecomment-1249939496
https://twitter.com/ClickHouseDB/status/1628810881164316672

QuestDB

Importing 3!

September 12,2022 - 13 min read

E Andrey Pechkuroy

g QuestDB Engineering

in this blog post, QuestDB's Very owr
. using the SQL copy statement, an,
| how the new improvement is made |
known OLAP and time-series databa

Introduction

As an open source time seri.

fast and convenient manner
we decided to dedicate our n
discuss what paralle| Import |
recent ClickHouse team's ben

How ClickBenc|

Recently ClickHouse conducteds

benchmark included data import as
benchmark provided us with nice teg
benchmark was using QuestDE's HT,
may wonder why it doesn't use a par
many benefits for time series analys

T TigerBeetie

A Programmer-Friend|
Abstraction Overio_u

and kqueue
B ‘%k 198 and @Pm Eaton or

Consider this tale of /0
fo_uring and I\E‘L 2 _and

alexey-milovidov of

here was an € yeriment a g urir g b sau jusvl
X . r : y
. s to be unsus ainable

Unfortunately, it prove

WEEES argina ovemen erro ance. Butt ecodebe
g | V ti ¢

:

onlya P P

complicated.
the code) can
testing before

© &1 O
I didn't observe 1o_ur

expectat
You car|
data yof

context O
fast thaty

alexey-milovidov cOmime

but al
i much slower, e
e to find cases when itis faster.

' le
ions because I wasn tab

CIiCI(HOLISE Product v Use Cases Company v Learn v Pricing & Signin Get Started

A journey to io_uring, AIO

ClickHouse #%
@ClickHouseDRB

.'a

Alexey Miovid...

so I have no big

enas 99,0 and 99,9
Inthis experiment. We believe that Iseek(2) followed

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://questdb.io/blog/2022/09/12/importing-300k-rows-with-io-uring/
https://tigerbeetle.com/blog/a-friendly-abstraction-over-iouring-and-kqueue/
https://clickhouse.com/blog/a-journey-to-io_uring-aio-and-modern-storage-devices
https://github.com/ClickHouse/ClickHouse/issues/10787#issuecomment-1249939496
https://twitter.com/ClickHouseDB/status/1628810881164316672
https://github.com/ClickHouse/ClickHouse/pull/38456#issuecomment-1888422236

I0_URING

Linux system call interface for zero-copy

asynchronous I/O operations.

— Originally added in 2019 for accessing storage devices.
— Expanded in 2022 to support network devices.

— Windows has something similar called ICOP.

OS exposes two circular buffers (queues) to store

submission and completion I/O requests.

— DBMS submits requests for the kernel to perform
read/write operations to DBMS-provided buffers.

— When OS completes request, it puts the event on the
competition queue and invokes callback.

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports

I/0 BOTTLENECKS

I[/O devices (network, disk) are faster.
OS logic has also gotten faster.

Max Achievable Throughput:

42Gbps per CPU core
— A 2021 study found that over 50% of CPU
cycles are spent on memcpy

Source: Matt Butrovich

$CMU-DB

15-721 (Spring 2024)

User-space DBMS

s —

s -

q';; DBMS

3 A

= e ~N

send()/recv()

o \ Y,

& s N

t?a' Socket Stack

o \ Y,

= f N

< TCP Stack
_' J

=

o

: CJB

[}

- Client

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.1145/3452296.3472888
https://mattbutrovi.ch/

USER-BYPASS METHODS

Instead of pulling DBMS data into User-bypass DBMS
user-space, push DBMS logic down : g
into kernel-space. g DB

— Avoids copying buffers, scheduling user ;
threads, and system call overhead. [o sendl)/reayl)

AN J

-
[s DBMS }Socket Stack

Kernel-space

Only useful for parts of the DBMS CI o Stad}
that operate on I/Os that the system . g
does not retain for long periods of S |;|E

time. Client

Source: Matt Butrovich

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://mattbutrovi.ch/

USER-BYPASS METHODS

X eBPF

A
eBPF
Compiler

Execute DBMS logic inside of the OS

kernel via extended-Berkeley Packet
Filters (eBPF) to avoid having to
communicate with user-space code.

User-space

eBPF eBPF
. . Source Code Bytecode
Dynamically load safe, event-driven -
programs in kernel-space. .@

— Write in C and compile to eBPF
— Programming model is limited (no malloc,
restricted # of instructions).

T Q
Compiler

eBPF eBPF
Binary Verifier

Kernel-space

° I TIGGER: A DATABASE PROXY THAT BOUNCES
WITH USER-BYPASS
VLDB 2023

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/EBPF
https://en.wikipedia.org/wiki/EBPF
https://ebpf.io/
https://doi.org/10.14778/3611479.3611530
https://doi.org/10.14778/3611479.3611530

CONNECTION POOLING THROUGHPUT

Amazon EC2 Instances running PostgreSQL vi4.5
YCSB Workload

m pgBouncer m Odyssey m CMU Tigger
55

52

THigher is Better 51 50
50 48
45

45

40

B51 -

Throughput (k TPS)

30 -

large xlarge 2xlarge 4xlarge 8xlarge

Source: Matt Butrovich

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://mattbutrovi.ch/

OBSERVATION

[t's great that we optimized the DBMS's server-side
networking stack and the DBMS wire protocol.

But what about optimizing the client-side when it
receives data from the DBMS?

M Execution + Transfer Deserialization
M Convert to Dataframe B Other Overhead
MySQL | | | |
PostgreSQL :! ! ! # ‘
0 2 4 6 8 10 12 14
Source: Xiaoying Wang Time (minutes)

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://wangxiaoying.github.io/

CONNECTORX

ConnectorX is a client-side library
that provides fast and memory-
efficient loading of data from a .l

DBMS into Dataframes. ”ﬁ‘
. PostgreSQL .
— Integrated in Polars. \ ‘

\ Partition @erte -
Divides data into chunks to allow o s o

multiple threads to populate Do bandas Dtaframe
Dataframe arrays in parallel.

read_sql(pg_conn, “SELECT ID, name, GPA, age FROM Students”,
partition_on="1D", partition_nums=3, partition_range=(1, 3,000,000})

‘ @ Allocate NumPy Arrays

[2M

/®
J;

~*| CONNECTORX: ACCELERATING DATA LOADING
\Ij[(lg)BMZ(I)DZAZTABASES TO DATAFRAMES

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://github.com/sfu-db/connector-x
https://doi.org/10.14778/3551793.3551847
https://doi.org/10.14778/3551793.3551847

$2CMU-DB

15-721 (Spring 2024)

PARTING THOUGHTS

A DBMS's networking protocol is an often-
overlooked bottleneck for performance.

Kernel bypass methods greatly improve

performance but require more bookkeeping.
— Probably more useful for internal DBMS communication.

User bypass is an interesting direction for
ephemeral I/Os in DBMSs.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

NEXT CLASS

Query Optimization for the next two weeks.
— [will update reading list tonight!

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

	Introduction
	Slide 1: Database Networking Protocols
	Slide 2: LAST CLASS
	Slide 3: TODAY'S AGENDA

	Access APIs
	Slide 4: DATABASE ACCESS
	Slide 5: DATABASE ACCESS
	Slide 6: DATABASE ACCESS
	Slide 7: DATABASE ACCESS
	Slide 8: OPEN DATABASE CONNECTIVITY
	Slide 9: OPEN DATABASE CONNECTIVITY
	Slide 10: JAVA DATABASE CONNECTIVITY
	Slide 11: JAVA DATABASE CONNECTIVITY

	Network Protocols
	Slide 12: DATABASE NETWORKING PROTOCOLS
	Slide 13: EXISTING PROTOCOLS
	Slide 14: EXISTING PROTOCOLS
	Slide 15: PROTOCOL DESIGN SPACE
	Slide 16: ROW VS. COLUMN LAYOUT
	Slide 17: ROW VS. COLUMN LAYOUT
	Slide 18: COMPRESSION
	Slide 19: DATA SERIALIZATION
	Slide 20: STRING HANDLING
	Slide 21: NETWORK PROTOCOL PERFORMANCE
	Slide 22: NETWORK PROTOCOL PERFORMANCE
	Slide 23: NETWORK PROTOCOL PERFORMANCE
	Slide 24: DATA EXPORT PERFORMANCE

	Kernel Bypass Methods
	Slide 25: OBSERVATION
	Slide 26: KERNEL-BYPASS METHODS
	Slide 27: DATA PLANE DEVELOPMENT KIT (DPDK)
	Slide 28: DATA PLANE DEVELOPMENT KIT (DPDK)
	Slide 29: REMOTE DIRECT MEMORY ACCESS
	Slide 30: IO_URING
	Slide 31: IO_URING
	Slide 32: IO_URING
	Slide 33: IO_URING
	Slide 34: IO_URING
	Slide 35: IO_URING
	Slide 36: IO_URING
	Slide 37: IO_URING

	Userbypass
	Slide 38: I/O BOTTLENECKS
	Slide 39: USER-BYPASS METHODS
	Slide 40: USER-BYPASS METHODS
	Slide 41: CONNECTION POOLING THROUGHPUT

	Client-Side
	Slide 42: OBSERVATION
	Slide 43: CONNECTORX

	Conclusion
	Slide 44: PARTING THOUGHTS
	Slide 45: NEXT CLASS

