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LAST CLASS

How to inline user-defined functions into a query
so that the DBMS's optimizer can understand its

behavior and intention.
— Pushing application logic into the DBMS.
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TODAY'S AGENDA

Database Access APIs
Database Network Protocols
Kernel/User Bypass Methods
Client-side Optimizations
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DATABASE ACCESS

All the demos in the class have been through a

terminal client.

— SQL queries are written by hand.
— Results are printed to the terminal.

Real programs access a database through an API:
— Direct Access (DBMS-specific)

— Open Database Connectivity (ODBC)
— Java Database Connectivity (JDBC)
— Python PEP-0249

— HTTP / REST (DBMS-specific)
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DATABASE ACCESS

All the demos in the class have been through a

terminal client.

— SQL queries are written by hand.
— Results are printed to the terminal.

Real programs access a database through an API:
— Direct Access (DBMS-specific)

— Open Database Connectivity (ODBC)
— Java Database Connectivity (JDBC)
— Python PEP-0249

— HTTP / REST (DBMS-specific)
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OPEN DATABASE CONNECTIVITY

Standard API for accessing a DBMS. Designed to be
independent of the DBMS and OS.

Originally developed in the early 1990s by
Microsoft and Simba Technologies.

Every major DBMS has an ODBC implementation.
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OPEN DATABASE CONNECTIVITY

ODBC is based on the device driver model.

The driver encapsulates the logic needed to

convert a standard set of commands into the
DBMS-specific calls.

“
V)
é Request
Application § < B
8 Result
Q S— 7
Q
DBMS Wire Protocol

$2CMU-DB
111111 (Spring 2024)


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Device_driver

JAVA DATABASE CONNECTIVITY

Developed by Sun Microsystems in 1997 to provide

a standard API for connecting a Java program with

a DBMS.

— JDBC can be considered a version of ODBC for the
programming language Java instead of C.

JDBC supports different client-side configurations

because there may not be a native Java driver for
each DBMS.
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JAVA DATABASE CONNECTIVITY

Approach #1: JDBC-ODBC Bridge €@ Removed in 2014
— Convert J]DBC method calls into ODBC function calls.

Approach #2: Native-API Driver

— Convert JDBC method calls into native calls (via JNI) of
the target DBMS APL.

Approach #3: Network-Protocol Driver

— Driver connects to a middleware in a separate process that
converts JDBC calls into a vendor-specific DBMS protocol.

Approach #4: Database-Protocol Driver €@ Best Approach

— Pure Java implementation that converts JDBC calls directly
into a vendor-specific DBMS protocol.
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DATABASE NETWORKING PROTOCOLS 1

All major DBMSs implement their own proprietary

client wire protocol over TCP/IP,
— Use Unix domain sockets if running on same box as app.
— Andy doesn't know of any DBMS using UDP for clients.

A typical client/server interaction:

— Client connects to DBMS and begins authentication
process. There may be an SSL/TLS handshake.

— Client then sends a query.

— DBMS executes the query, then serializes the results and
sends it back to the client.

$2CMU-DB

15-721 (Spring 2024)


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.morling.dev/blog/talking-to-postgres-through-java-16-unix-domain-socket-channels/

EXISTING PROTOCOLS

Most newer systems implement one of the open-
source DBMS wire protocols. This allows them to
reuse the client drivers without having to develop
and support them.

Just because on DBMS "speaks" another DBMS's

wire protocol does not mean that it is compatible.

— Need to also support catalogs, SQL dialect, and other
functionality.
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EXISTING PROTOCOLS
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PROTOCOL DESIGN SPACE

Row vs. Column Layout
Compression

Data Serialization
String Handling

=5.|DON'T HOLD MY DATA HOSTAGE: A CASE FOR
CLIENT PROTOCOL REDESIGN
VLDB 2017
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ROW VS. COLUMN LAYOUT

String sgl = "SELECT * FROM xxx";

. Statement stmt = conn.createStatement();
ODBC/JDBC are rOW'Orlented APIS- ResultSet rs = stmt.executeQuery(sql);
. hil .
— Server packages tuples into messages one O e ot ron by o
: rs.getInt(1);
tUPle ata tlnfle'_ ) rs.getString(2);
— Client deserializes data one tuple at a time. \ VSR

stmt.close();

But switching to a column-oriented String sql = 'SELECT « FROM xxx!;

Statement stmt = conn.createStatement();

S 3 ResultS = . 1);
API is a bad too because client may hile oy pecuteuery(sab)
access multiple columns for a tuple. o e o i
rs.getValue();
}
}

stmt.close(); Not Real JDBC Code!

Solution: Vector-oriented API
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ARROW>>> Q

”_ > Specifications > ADBC: Arrow...

ADBC: Arrow Database Connectivity

Full Documentation on ADBC can be found at Mps:ffarrow.agache.org#adbc!.

Rationale

The Arrow ecosystem lacks standard database interfaces built around Arrow data, especially for efficiently fetching large
datasets (i.e. with minimal or no serialization and copying). Without a common AP, the end resujt is @ mix of custom protocols
(e.g. BigQuery, Snowflake) and adapters (e.g. Turbodbc) scattered across languages. Consumers must laboriously wrap
individual systems (as DB is contemplating and Trino does with connectors).

ADBC aims to provide a minimal database client Ap| standard, based on Arrow, for C, Go, and Java (with bindings for other
Ianguages}. Applications code to this API standard (in much the same way as they would with JDBC or ODBC), but fetch result

databases.

* Support both SQL dialects and the emergent Substrait standard.

* Support explicitly partitioned/distributed result sets to work better with contemporary distributed systems.

* Allow for a variety of implementations to maximize reach.

$CMU-DB
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COMPRESSION

Approach #1: Naive Compression

— DBMS applies a general-purpose compression algo (1z4,
gzip, zstd) on message chunks before transmitting.

— Examples: Oracle, MySQL, Snowflake, BigQuery

Approach #2: Columnar-Specific Encoding

— Analyze results and choose a specific compression
encoding (dictionary, RLE, delta) per column.
— No system implements this except with Arrow ADBC.

Heavyweight compression is better when network
is slow. DBMS achieves better compression ratios
for larger message chunk sizes.
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DATA SERIALIZATION

Approach #1: Binary Encoding

— Client handles endian conversion.

— The closer the serialized format is to the DBMS's binary
format, then the lower the overhead to serialize.

— DBMS can implement its own format or rely on existing
libraries (ProtoBuffers, Thrift, FlatBuffers).

¥ Pr)t')faneDB
Approach #2: Text Encoding 123456
— Convert all binary values into strings (atoi). ‘
— Do not have to worry about endianness. ) )
— Missing values encoded as string "NULL" 123456
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STRING HANDLING

Approach #1: Null Termination

— Store a null byte (' \@"') to denote the end of a string.
— Client scans the entire string to find end.

Approach #2: Length-Prefixes
— Add the length of the string at the beginning of the bytes.

Approach #3: Fixed Width

— Pad every string to be the max size of that attribute.
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NETWORK PROTOCOL PERFORMANCE

Transfer One Tuple from TCP-H LINEITEM

B MySQL+GZIP B MySQL B MonetDB B Postgres
M Oracle M MongoDB W DB2 M Hive
10 ;

S | Lower is Better
\:" o 1080
g |

= .

3 Text Encoding
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0.01 -

All Other Protocols Use Binary Encoding

Source: Hannes Muhleisen

$2CMU-DB

15-721 (Spring 2024 )



https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://hannes.muehleisen.org/

NETWORK PROTOCOL PERFORMANCE

Transfer Im Tuples from TCP-H LINEITEM
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2 10
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1 [ I I 1
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Network Latency (ms)

Source: Hannes Muhleisen
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NETWORK PROTOCOL PERFORMANCE

Transfer Im Tuples from TCP-H LINEITEM
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DATA EXPORT PERFORMANCE

Transfer 7GB of Tuples from TPC-C ORDER_LINE

B Postgres M Vectorized Postgres Arrow Flight H RDMA

~1200 . 1057
S THigher is Better
2 891
S 800
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)
s
£ 400
= 150
S 38
s 0l e—
= o -
Transport Method

“ |MAINLINING DATABASES: SUPPORTING FAST TRANSACTIONAL
VngBRléIC-)(Z)(')ADS ON UNIVERSAL COLUMNAR DATA FILE FORMATS
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OBSERVATION

The DBMS's network protocol implementation is
not the only source of slowdown.

The OS's TCP/IP stack is slow...

— Expensive context switches / interrupts
— Data copying
— Lots of latches in the kernel

How to avoid the OS entirely or work with it
to make our DBMS run faster.

$2CMU-DB
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KERNEL-BYPASS METHODS

Allows the system to get data directly from the NIC
into the DBMS address space.

— No unnecessary data copying.
— No OS TCP/IP stack.

Approach #1: Data Plane Development Kit
Approach #2: Remote Direct Memory Access
Approach #3: 10_uring

£=CMU-DB
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DATA PLANE DEVELOPMENT KIT (DPDK)

Set of libraries that allows programs to access NIC
directly. Treat the NIC as a bare metal device.

Requires the DBMS code to do more to manage

network stack (layers 3+4), memory, and buffers.
— Reimplement TCP/IP in usercode (e.g., F-Stack).

— No data copying.

— No system calls.

Example: ScyllaDB's Seastar, Yellowbrick's ypRPC

@ DATA PLANE DEVELOPMENT KIT

£=CMU-DB
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DATA PLANE DEVELOPMENT KIT (DPDK)

Set of libraries that allov “ e D i

directly. Treat the NIC g  feoying o @esovarers @ucs saro s s e

Requires the DBMS cod* A nasty analogy is that spdk is like peeing
your pants to keep warm. It works great for a

network stack (layers 34  few minutes, then you start regretting it.
— Reimplement TCP/IP in|  1120au-snov 2017

— No data copying. 2 0 QOPVOODE @
— No system calls. =

0 2 Q 10 4]

Example: ScyllaDB's Seastar, Yellowbrick's ypRPC

@ DATA PLANE DEVELOPMENT KIT
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REMOTE DIRECT MEMORY ACCESS

Read and write memory directly on a remote host
without going through OS.

— The client needs to know the correct address of the data
that it wants to access.
— The server is unaware that memory is being accessed

remotely (i.e., no callbacks).
— InfiniBand vs. RoCE

Examples: Oracle Exadata, Microsoft FaRM

$CMU-DB
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I0_URING

Linux system call interface for zero-copy

asynchronous I/O operations.

— Originally added in 2019 for accessing storage devices.
— Expanded in 2022 to support network devices.

— Windows has something similar called ICOP.

OS exposes two circular buffers (queues) to store

submission and completion I/O requests.

— DBMS submits requests for the kernel to perform
read/write operations to DBMS-provided buffers.

— When OS completes request, it puts the event on the
competition queue and invokes callback.

$2CMU-DB
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cuesos R ING

Importing 300k rows/sec with io_uring for zero-copy
OT Zero-

O11S.
DB Engineering . d ]
‘ accessing storage €VICES.
in this blog post, QuestDB's very own presents how to ingest large CSV files a lot more efficiently

.~ using the SQL statement, and takes us through th shares insights about ] t network deVlceS.
| how the new improvememiamadepossibleby io_ur import versus several well- P
ilar called ICOP.

e journey of bench marking. Andrei also

ing and compares QuestDB's

' known OLAP and time-series databases in Clickhouse's ClickBench benchmark.

Introduction
_ , — _ juffers (queues) to store
As an open source time series database company, we understand that getting your existing data into the database in a
fast and convenient manner is as important as being able to and your data efficiently later on. That's why
we decided to dedicate our new release, QuestDB 6.5, to the new parallel feature. In this blog post, we . n I/ O reque StS .
discuss what paralle| Import means for our users and how it's implemented imternally. As a bonus, we also share how
recent ClickHouse team's benchmark felped us to improve both QuestDB and its demol the kernel to perfo rm

nstrated results.
BMS-provided buffers.
How ClickBench helped us improve st, it puts the event on the
Recently ClickHouse conducted a
benchmark included data import as the first s

tep. Since we were In the process of building a faster import, this 7 Okes Callb aCk.
benchmark provided us with nice test data and baseline results. So, what have we achieved? Let's find out. The
benchmark was using QuestDE's HTTP

loingest the data into an existing non-partitioned table. You
may wonder why it doesn't use a table, which stores the data serted b
many benefits for time series analysis. Most likely, th

for their own database and many others, including QuestDE, The

y the timestamp values and provides

e reason is terrible import execution time. Both HTTP-based
] — - . .
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Abstraction Over io_uring
and kqueue

By @ King Butcher and @ Phil Eaton on Nov 23, 2022

Consider this tale of /0 and performance. We'll start with blocking 1/0, explore
fo_uring and kgueue, and take home an event loop very similar to some software you
may find famiiiar.

This is a twist on King's talk at Software You Can Love Milan 22.

Classical approach

When you want to read from a file you might open(} and then call read() as many
times as necessary to fill a buffer of bytes from the file. And in the opposite
direction, you call write() as many times as needed until everything is written. it's
similar for a TCP client with sockets, but instead of open() you first call socket ()
and then connect () to your server. Fun stuff.

In the real world though you can't always read everything you want Immediately
from a file descriptor. Nor can you always write everything you want immediately to
a file descriptor,

You can swiltch a file descriptor into non-blocking mode so the call won't block while
data you requested is not available. But system calls are still expensive, incurring
context switches and cache misses. In fact, networks and disks have become so
fast that these costs can start to approach the cost of doing the I/0 itself. For the
duration of time a file descriptor is unable to read or write, you don't want to waste
time continuously retrying read or write system calis.
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Classical approach

When you want to read from a file you might open( ) and then call re
times as necessary to fill a buffer of bytes from the file. And in the op,
direction, you call write() as many times as needed until everything
similar for a TCP client with sockets, but instead of open( ) you first ¢
and then connect () to your server. Fun stuff.
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You can swiltch a file descriptor into non-blocking mode so the call w(
data you requested is not available. But system calls are still expensi
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While main memory is considered to be rather cheap by some systems designers it is not
always possible to store everything in the main memory. When data is stored in external

out how different Linux system calls perform for available devices. In total HDD, SATA 55D,
NVMe SSD, and intel Optane were accessed via single-threaded and multi-threaded pread,
Linux aio, and new io_uring interfaces. Full report is available in PDF format: link. We give one
section from the report as an example.

Single Random Read

External memory devices are block devices which means data transfer between a device and
a host is done in blocks rather than single bytes. Typically 512 bytes or 4 kilobytes blocks are

reads we calculate average, minimum and maximum latency as well as 99,0 and 99,9
percentiles. We use system call pread(2) in this experiment. We believe that Iseek(2) followed

Get Started

time continuously retrying read or write system calis.
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I0_URING

Linux system call interface for zero-copy

asynchronous I/O operations.

— Originally added in 2019 for accessing storage devices.
— Expanded in 2022 to support network devices.

— Windows has something similar called ICOP.

OS exposes two circular buffers (queues) to store

submission and completion I/O requests.

— DBMS submits requests for the kernel to perform
read/write operations to DBMS-provided buffers.

— When OS completes request, it puts the event on the
competition queue and invokes callback.
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I/0 BOTTLENECKS

I[/O devices (network, disk) are faster.
OS logic has also gotten faster.

Max Achievable Throughput:

42Gbps per CPU core
— A 2021 study found that over 50% of CPU
cycles are spent on memcpy

Source: Matt Butrovich
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USER-BYPASS METHODS

Instead of pulling DBMS data into User-bypass DBMS
user-space, push DBMS logic down : g
into kernel-space. g DB

— Avoids copying buffers, scheduling user ;
threads, and system call overhead. [ o sendl)/reayl)

AN J

-
[s DBMS }Socket Stack

Kernel-space

Only useful for parts of the DBMS CI o Stad}
that operate on I/Os that the system . g
does not retain for long periods of S |;|E

time. Client

Source: Matt Butrovich
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USER-BYPASS METHODS

X eBPF

A
eBPF
Compiler

Execute DBMS logic inside of the OS

kernel via extended-Berkeley Packet
Filters (eBPF) to avoid having to
communicate with user-space code.

User-space

eBPF eBPF
. . Source Code Bytecode
Dynamically load safe, event-driven -
programs in kernel-space. .@

— Write in C and compile to eBPF
— Programming model is limited (no malloc,
restricted # of instructions).

T Q
Compiler

eBPF eBPF
Binary Verifier

Kernel-space

° I TIGGER: A DATABASE PROXY THAT BOUNCES
WITH USER-BYPASS
VLDB 2023
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CONNECTION POOLING THROUGHPUT

Amazon EC2 Instances running PostgreSQL vi4.5
YCSB Workload

m pgBouncer m Odyssey m CMU Tigger
55

52

THigher is Better 51 50
50 48
45

45

40

B51 -

Throughput (k TPS)

30 -

large xlarge 2xlarge 4xlarge 8xlarge

Source: Matt Butrovich
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OBSERVATION

[t's great that we optimized the DBMS's server-side
networking stack and the DBMS wire protocol.

But what about optimizing the client-side when it
receives data from the DBMS?

M Execution + Transfer Deserialization
M Convert to Dataframe B Other Overhead
MySQL | | | |
PostgreSQL :! ! ! # ‘
0 2 4 6 8 10 12 14
Source: Xiaoying Wang Time ( minutes)
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CONNECTORX

ConnectorX is a client-side library
that provides fast and memory-
efficient loading of data from a .l

DBMS into Dataframes. ”ﬁ‘
. PostgreSQL .
— Integrated in Polars. \ ‘

\ Partition @erte -
Divides data into chunks to allow o s o

multiple threads to populate Do bandas Dtaframe
Dataframe arrays in parallel.

read_sql(pg_conn, “SELECT ID, name, GPA, age FROM Students”,
partition_on="1D", partition_nums=3, partition_range=(1, 3,000,000})

‘ @ Allocate NumPy Arrays

[ 2M

/®
J;

~*| CONNECTORX: ACCELERATING DATA LOADING
\Ij[(lg)BMZ(I)DZAZTABASES TO DATAFRAMES
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PARTING THOUGHTS

A DBMS's networking protocol is an often-
overlooked bottleneck for performance.

Kernel bypass methods greatly improve

performance but require more bookkeeping.
— Probably more useful for internal DBMS communication.

User bypass is an interesting direction for
ephemeral I/Os in DBMSs.
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NEXT CLASS

Query Optimization for the next two weeks.
— [ will update reading list tonight!
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