
ADVANCED
DATABASE

SYSTEMS

Andy Pavlo
CMU 15-721
Spring 202412

Database
Networking

Protocols

https://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/
https://db.cs.cmu.edu/

15-721 (Spring 2024)

LAST CLASS

How to inline user-defined functions into a query
so that the DBMS's optimizer can understand its
behavior and intention.
→ Pushing application logic into the DBMS.

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TODAY'S AGENDA

Database Access APIs

Database Network Protocols

Kernel/User Bypass Methods

Client-side Optimizations

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DATABASE ACCESS

All the demos in the class have been through a
terminal client.
→ SQL queries are written by hand.
→ Results are printed to the terminal.

Real programs access a database through an API:
→ Direct Access (DBMS-specific)
→ Open Database Connectivity (ODBC)
→ Java Database Connectivity (JDBC)
→ Python PEP-0249
→ HTTP / REST (DBMS-specific)

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://peps.python.org/pep-0249/

15-721 (Spring 2024)

DATABASE ACCESS

All the demos in the class have been through a
terminal client.
→ SQL queries are written by hand.
→ Results are printed to the terminal.

Real programs access a database through an API:
→ Direct Access (DBMS-specific)
→ Open Database Connectivity (ODBC)
→ Java Database Connectivity (JDBC)
→ Python PEP-0249
→ HTTP / REST (DBMS-specific)

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://peps.python.org/pep-0249/
https://dev.mysql.com/doc/c-api/8.0/en/
https://www.postgresql.org/docs/current/libpq-exec.html

15-721 (Spring 2024)

DATABASE ACCESS

All the demos in the class have been through a
terminal client.
→ SQL queries are written by hand.
→ Results are printed to the terminal.

Real programs access a database through an API:
→ Direct Access (DBMS-specific)
→ Open Database Connectivity (ODBC)
→ Java Database Connectivity (JDBC)
→ Python PEP-0249
→ HTTP / REST (DBMS-specific)

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://peps.python.org/pep-0249/
https://dev.mysql.com/doc/c-api/8.0/en/
https://www.postgresql.org/docs/current/libpq-exec.html

15-721 (Spring 2024)

DATABASE ACCESS

All the demos in the class have been through a
terminal client.
→ SQL queries are written by hand.
→ Results are printed to the terminal.

Real programs access a database through an API:
→ Direct Access (DBMS-specific)
→ Open Database Connectivity (ODBC)
→ Java Database Connectivity (JDBC)
→ Python PEP-0249
→ HTTP / REST (DBMS-specific)

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://peps.python.org/pep-0249/

15-721 (Spring 2024)

OPEN DATABASE CONNECTIVITY

Standard API for accessing a DBMS. Designed to be
independent of the DBMS and OS.

Originally developed in the early 1990s by
Microsoft and Simba Technologies.

Every major DBMS has an ODBC implementation.

5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Simba_Technologies

15-721 (Spring 2024)

OPEN DATABASE CONNECTIVITY

ODBC is based on the device driver model.

The driver encapsulates the logic needed to
convert a standard set of commands into the
DBMS-specific calls.

6

Application
O

D
B

C
 D

ri
ve

r
Request

Result

DBMS Wire Protocol

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Device_driver

15-721 (Spring 2024)

JAVA DATABASE CONNECTIVITY

Developed by Sun Microsystems in 1997 to provide
a standard API for connecting a Java program with
a DBMS.
→ JDBC can be considered a version of ODBC for the

programming language Java instead of C.

JDBC supports different client-side configurations
because there may not be a native Java driver for
each DBMS.

7

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

JAVA DATABASE CONNECTIVITY

Approach #1: JDBC-ODBC Bridge
→ Convert JDBC method calls into ODBC function calls.

Approach #2: Native-API Driver
→ Convert JDBC method calls into native calls (via JNI) of

the target DBMS API.

Approach #3: Network-Protocol Driver
→ Driver connects to a middleware in a separate process that

converts JDBC calls into a vendor-specific DBMS protocol.

Approach #4: Database-Protocol Driver
→ Pure Java implementation that converts JDBC calls directly

into a vendor-specific DBMS protocol.

8

Removed in 2014

Best Approach

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Java_Native_Interface

15-721 (Spring 2024)

DATABASE NETWORKING PROTOCOLS

All major DBMSs implement their own proprietary
client wire protocol over TCP/IP.
→ Use Unix domain sockets if running on same box as app.
→ Andy doesn't know of any DBMS using UDP for clients.

A typical client/server interaction:
→ Client connects to DBMS and begins authentication

process. There may be an SSL/TLS handshake.
→ Client then sends a query.
→ DBMS executes the query, then serializes the results and

sends it back to the client.

9

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.morling.dev/blog/talking-to-postgres-through-java-16-unix-domain-socket-channels/

15-721 (Spring 2024)

EXISTING PROTOCOLS

Most newer systems implement one of the open-
source DBMS wire protocols. This allows them to
reuse the client drivers without having to develop
and support them.

Just because on DBMS "speaks" another DBMS's
wire protocol does not mean that it is compatible.
→ Need to also support catalogs, SQL dialect, and other

functionality.

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

EXISTING PROTOCOLS

11

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PROTOCOL DESIGN SPACE

Row vs. Column Layout

Compression

Data Serialization

String Handling

12

DON'T HOLD MY DATA HOSTAGE: A CASE FOR
CLIENT PROTOCOL REDESIGN
VLDB 2017

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/citation.cfm?id=3115408
http://dl.acm.org/citation.cfm?id=2005619

15-721 (Spring 2024)

ROW VS. COLUMN LAYOUT

ODBC/JDBC are row-oriented APIs.
→ Server packages tuples into messages one

tuple at a time.
→ Client deserializes data one tuple at a time.

But switching to a column-oriented
API is a bad too because client may
access multiple columns for a tuple.

Solution: Vector-oriented API

13

String sql = "SELECT * FROM xxx";
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(sql);
while (rs.next()) {
 // Do something magical row by row!
 rs.getInt(1);
 rs.getString(2);
 rs.getDate(3);
}
stmt.close();

String sql = "SELECT * FROM xxx";
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(sql);
while (rs.nextCol()) {
 while (rs.nextRow()) {
 // Do something magical per column!
 rs.getValue();
 }
}
stmt.close(); Not Real JDBC Code!

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

ROW VS. COLUMN LAYOUT

ODBC/JDBC are row-oriented APIs.
→ Server packages tuples into messages one

tuple at a time.
→ Client deserializes data one tuple at a time.

But switching to a column-oriented
API is a bad too because client may
access multiple columns for a tuple.

Solution: Vector-oriented API

13

String sql = "SELECT * FROM xxx";
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(sql);
while (rs.next()) {
 // Do something magical row by row!
 rs.getInt(1);
 rs.getString(2);
 rs.getDate(3);
}
stmt.close();

String sql = "SELECT * FROM xxx";
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(sql);
while (rs.nextCol()) {
 while (rs.nextRow()) {
 // Do something magical per column!
 rs.getValue();
 }
}
stmt.close(); Not Real JDBC Code!

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://arrow.apache.org/docs/format/ADBC.html

15-721 (Spring 2024)

COMPRESSION

Approach #1: Naïve Compression
→ DBMS applies a general-purpose compression algo (lz4,

gzip, zstd) on message chunks before transmitting.
→ Examples: Oracle, MySQL, Snowflake, BigQuery

Approach #2: Columnar-Specific Encoding
→ Analyze results and choose a specific compression

encoding (dictionary, RLE, delta) per column.
→ No system implements this except with Arrow ADBC.

Heavyweight compression is better when network
is slow. DBMS achieves better compression ratios
for larger message chunk sizes.

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://blogs.oracle.com/dbstorage/post/advanced-network-compression-a-lessor-known-feature-of-advanced-compression
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html
https://docs.snowflake.com/en/developer-guide/odbc/odbc-parameters#label-odbc-additional-connection-parameters-put-fastfail
https://cloud.google.com/bigquery/docs/api-performance

15-721 (Spring 2024)

DATA SERIALIZATION

Approach #1: Binary Encoding
→ Client handles endian conversion.
→ The closer the serialized format is to the DBMS's binary

format, then the lower the overhead to serialize.
→ DBMS can implement its own format or rely on existing

libraries (ProtoBuffers, Thrift, FlatBuffers).

Approach #2: Text Encoding
→ Convert all binary values into strings (atoi).
→ Do not have to worry about endianness.
→ Missing values encoded as string "NULL"

15

1234564-bytes

"123456"+6-bytes

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://developers.google.com/protocol-buffers
https://en.wikipedia.org/wiki/Apache_Thrift
https://google.github.io/flatbuffers/
http://www.cplusplus.com/reference/cstdlib/atoi/

15-721 (Spring 2024)

STRING HANDLING

Approach #1: Null Termination
→ Store a null byte ('\0') to denote the end of a string.
→ Client scans the entire string to find end.

Approach #2: Length-Prefixes
→ Add the length of the string at the beginning of the bytes.

Approach #3: Fixed Width
→ Pad every string to be the max size of that attribute.

16

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

NETWORK PROTOCOL PERFORMANCE

17

0.013 0.011
0.017

0.029
0.059 0.063

0.666
1.080

0.01

0.1

1

10

E
la

ps
ed

 T
im

e
(s

ec
)

MySQL+GZIP MySQL MonetDB Postgres

Oracle MongoDB DB2 Hive

Transfer One Tuple from TCP-H LINEITEM

Source: Hannes Mühleisen

Text Encoding

All Other Protocols Use Binary Encoding

↓ Lower is Better

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://hannes.muehleisen.org/

15-721 (Spring 2024)

NETWORK PROTOCOL PERFORMANCE

18

1

10

100

0.1 1 10 100

E
la

ps
ed

 T
im

e
(s

ec
)

Network Latency (ms)

MySQL+GZIP MySQL MonetDB Postgres

Oracle MongoDB DB2 Hive

Transfer 1m Tuples from TCP-H LINEITEM

Source: Hannes Mühleisen

Compression overhead is bad
tradeoff when network is fast.

↓ Lower is Better

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://hannes.muehleisen.org/

15-721 (Spring 2024)

NETWORK PROTOCOL PERFORMANCE

18

1

10

100

0.1 1 10 100

E
la

ps
ed

 T
im

e
(s

ec
)

Network Latency (ms)

MySQL+GZIP MySQL MonetDB Postgres

Oracle MongoDB DB2 Hive

Transfer 1m Tuples from TCP-H LINEITEM

Source: Hannes Mühleisen

Verbose protocol
overhead is more
pronounced on
slower network.

↓ Lower is Better

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://hannes.muehleisen.org/

15-721 (Spring 2024)

DATA EXPORT PERFORMANCE

19

Transfer 7GB of Tuples from TPC-C ORDER_LINE

38
150

891

1057

0

400

800

1200

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Transport Method

Postgres Vectorized Postgres Arrow Flight RDMA

MAINLINING DATABASES: SUPPORTING FAST TRANSACTIONAL
WORKLOADS ON UNIVERSAL COLUMNAR DATA FILE FORMATS
VLDB 2020

↑Higher is Better

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.vldb.org/pvldb/vol14/p534-li.pdf
https://www.vldb.org/pvldb/vol14/p534-li.pdf

15-721 (Spring 2024)

OBSERVATION

The DBMS's network protocol implementation is
not the only source of slowdown.

The OS's TCP/IP stack is slow…
→ Expensive context switches / interrupts
→ Data copying
→ Lots of latches in the kernel

How to avoid the OS entirely or work with it
to make our DBMS run faster.

20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

KERNEL-BYPASS METHODS

Allows the system to get data directly from the NIC
into the DBMS address space.
→ No unnecessary data copying.
→ No OS TCP/IP stack.

Approach #1: Data Plane Development Kit

Approach #2: Remote Direct Memory Access

Approach #3: io_uring

21

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DATA PLANE DEVELOPMENT KIT (DPDK)

Set of libraries that allows programs to access NIC
directly. Treat the NIC as a bare metal device.

Requires the DBMS code to do more to manage
network stack (layers 3+4), memory, and buffers.
→ Reimplement TCP/IP in usercode (e.g., F-Stack).
→ No data copying.
→ No system calls.

Example: ScyllaDB's Seastar, Yellowbrick's ybRPC

22

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dpdk.org/
http://www.f-stack.org/
https://seastar.io/
https://yellowbrick.com/resources/executive-overviews/engineered-for-extreme-efficiency/
https://www.dpdk.org/

15-721 (Spring 2024)

DATA PLANE DEVELOPMENT KIT (DPDK)

Set of libraries that allows programs to access NIC
directly. Treat the NIC as a bare metal device.

Requires the DBMS code to do more to manage
network stack (layers 3+4), memory, and buffers.
→ Reimplement TCP/IP in usercode (e.g., F-Stack).
→ No data copying.
→ No system calls.

Example: ScyllaDB's Seastar, Yellowbrick's ybRPC

22

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dpdk.org/
http://www.f-stack.org/
https://seastar.io/
https://yellowbrick.com/resources/executive-overviews/engineered-for-extreme-efficiency/
https://twitter.com/axboe/status/927571366085246976
https://www.dpdk.org/

15-721 (Spring 2024)

REMOTE DIRECT MEMORY ACCESS

Read and write memory directly on a remote host
without going through OS.
→ The client needs to know the correct address of the data

that it wants to access.
→ The server is unaware that memory is being accessed

remotely (i.e., no callbacks).
→ InfiniBand vs. RoCE

Examples: Oracle Exadata, Microsoft FaRM

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/InfiniBand
https://en.wikipedia.org/wiki/RDMA_over_Converged_Ethernet
https://www.oracle.com/database/technologies/exadata/hardware/rdmanetwork/
https://www.microsoft.com/en-us/research/publication/farm-fast-remote-memory/

15-721 (Spring 2024)

IO_URING

Linux system call interface for zero-copy
asynchronous I/O operations.
→ Originally added in 2019 for accessing storage devices.
→ Expanded in 2022 to support network devices.
→ Windows has something similar called ICOP.

OS exposes two circular buffers (queues) to store
submission and completion I/O requests.
→ DBMS submits requests for the kernel to perform

read/write operations to DBMS-provided buffers.
→ When OS completes request, it puts the event on the

competition queue and invokes callback.

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports

15-721 (Spring 2024)

IO_URING

Linux system call interface for zero-copy
asynchronous I/O operations.
→ Originally added in 2019 for accessing storage devices.
→ Expanded in 2022 to support network devices.
→ Windows has something similar called ICOP.

OS exposes two circular buffers (queues) to store
submission and completion I/O requests.
→ DBMS submits requests for the kernel to perform

read/write operations to DBMS-provided buffers.
→ When OS completes request, it puts the event on the

competition queue and invokes callback.

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://questdb.io/blog/2022/09/12/importing-300k-rows-with-io-uring/

15-721 (Spring 2024)

IO_URING

Linux system call interface for zero-copy
asynchronous I/O operations.
→ Originally added in 2019 for accessing storage devices.
→ Expanded in 2022 to support network devices.
→ Windows has something similar called ICOP.

OS exposes two circular buffers (queues) to store
submission and completion I/O requests.
→ DBMS submits requests for the kernel to perform

read/write operations to DBMS-provided buffers.
→ When OS completes request, it puts the event on the

competition queue and invokes callback.

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://questdb.io/blog/2022/09/12/importing-300k-rows-with-io-uring/
https://tigerbeetle.com/blog/a-friendly-abstraction-over-iouring-and-kqueue/

15-721 (Spring 2024)

IO_URING

Linux system call interface for zero-copy
asynchronous I/O operations.
→ Originally added in 2019 for accessing storage devices.
→ Expanded in 2022 to support network devices.
→ Windows has something similar called ICOP.

OS exposes two circular buffers (queues) to store
submission and completion I/O requests.
→ DBMS submits requests for the kernel to perform

read/write operations to DBMS-provided buffers.
→ When OS completes request, it puts the event on the

competition queue and invokes callback.

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://questdb.io/blog/2022/09/12/importing-300k-rows-with-io-uring/
https://tigerbeetle.com/blog/a-friendly-abstraction-over-iouring-and-kqueue/
https://clickhouse.com/blog/a-journey-to-io_uring-aio-and-modern-storage-devices

15-721 (Spring 2024)

IO_URING

Linux system call interface for zero-copy
asynchronous I/O operations.
→ Originally added in 2019 for accessing storage devices.
→ Expanded in 2022 to support network devices.
→ Windows has something similar called ICOP.

OS exposes two circular buffers (queues) to store
submission and completion I/O requests.
→ DBMS submits requests for the kernel to perform

read/write operations to DBMS-provided buffers.
→ When OS completes request, it puts the event on the

competition queue and invokes callback.

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://questdb.io/blog/2022/09/12/importing-300k-rows-with-io-uring/
https://tigerbeetle.com/blog/a-friendly-abstraction-over-iouring-and-kqueue/
https://clickhouse.com/blog/a-journey-to-io_uring-aio-and-modern-storage-devices
https://github.com/ClickHouse/ClickHouse/issues/10787#issuecomment-1249939496

15-721 (Spring 2024)

IO_URING

Linux system call interface for zero-copy
asynchronous I/O operations.
→ Originally added in 2019 for accessing storage devices.
→ Expanded in 2022 to support network devices.
→ Windows has something similar called ICOP.

OS exposes two circular buffers (queues) to store
submission and completion I/O requests.
→ DBMS submits requests for the kernel to perform

read/write operations to DBMS-provided buffers.
→ When OS completes request, it puts the event on the

competition queue and invokes callback.

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://questdb.io/blog/2022/09/12/importing-300k-rows-with-io-uring/
https://tigerbeetle.com/blog/a-friendly-abstraction-over-iouring-and-kqueue/
https://clickhouse.com/blog/a-journey-to-io_uring-aio-and-modern-storage-devices
https://github.com/ClickHouse/ClickHouse/issues/10787#issuecomment-1249939496
https://twitter.com/ClickHouseDB/status/1628810881164316672

15-721 (Spring 2024)

IO_URING

Linux system call interface for zero-copy
asynchronous I/O operations.
→ Originally added in 2019 for accessing storage devices.
→ Expanded in 2022 to support network devices.
→ Windows has something similar called ICOP.

OS exposes two circular buffers (queues) to store
submission and completion I/O requests.
→ DBMS submits requests for the kernel to perform

read/write operations to DBMS-provided buffers.
→ When OS completes request, it puts the event on the

competition queue and invokes callback.

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://questdb.io/blog/2022/09/12/importing-300k-rows-with-io-uring/
https://tigerbeetle.com/blog/a-friendly-abstraction-over-iouring-and-kqueue/
https://clickhouse.com/blog/a-journey-to-io_uring-aio-and-modern-storage-devices
https://github.com/ClickHouse/ClickHouse/issues/10787#issuecomment-1249939496
https://twitter.com/ClickHouseDB/status/1628810881164316672
https://github.com/ClickHouse/ClickHouse/pull/38456#issuecomment-1888422236

15-721 (Spring 2024)

IO_URING

Linux system call interface for zero-copy
asynchronous I/O operations.
→ Originally added in 2019 for accessing storage devices.
→ Expanded in 2022 to support network devices.
→ Windows has something similar called ICOP.

OS exposes two circular buffers (queues) to store
submission and completion I/O requests.
→ DBMS submits requests for the kernel to perform

read/write operations to DBMS-provided buffers.
→ When OS completes request, it puts the event on the

competition queue and invokes callback.

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports

15-721 (Spring 2024)

I/O BOTTLENECKS

I/O devices (network, disk) are faster.

OS logic has also gotten faster.

Max Achievable Throughput:
42Gbps per CPU core
→ A 2021 study found that over 50% of CPU

cycles are spent on memcpy

25

User-space DBMS

Source: Matt Butrovich

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.1145/3452296.3472888
https://mattbutrovi.ch/

15-721 (Spring 2024)

USER-BYPASS METHODS

Instead of pulling DBMS data into
user-space, push DBMS logic down
into kernel-space.
→ Avoids copying buffers, scheduling user

threads, and system call overhead.

Only useful for parts of the DBMS
that operate on I/Os that the system
does not retain for long periods of
time.

26

User-bypass DBMS

Source: Matt Butrovich

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://mattbutrovi.ch/

15-721 (Spring 2024)

USER-BYPASS METHODS

Execute DBMS logic inside of the OS
kernel via extended-Berkeley Packet
Filters (eBPF) to avoid having to
communicate with user-space code.

Dynamically load safe, event-driven
programs in kernel-space.
→ Write in C and compile to eBPF
→ Programming model is limited (no malloc,

restricted # of instructions).

27

TIGGER: A DATABASE PROXY THAT BOUNCES
WITH USER-BYPASS
VLDB 2023

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/EBPF
https://en.wikipedia.org/wiki/EBPF
https://ebpf.io/
https://doi.org/10.14778/3611479.3611530
https://doi.org/10.14778/3611479.3611530

15-721 (Spring 2024)

CONNECTION POOLING THROUGHPUT

28

33
31

37 37
39

32

39

44 44
47

45
48

51 50
52

30

35

40

45

50

55

large xlarge 2xlarge 4xlarge 8xlarge

pgBouncer Odyssey CMU Tigger

Amazon EC2 Instances running PostgreSQL v14.5
YCSB Workload

T
hr

ou
gh

pu
t (

k
T

P
S)

Source: Matt Butrovich

↑Higher is Better

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://mattbutrovi.ch/

15-721 (Spring 2024)

OBSERVATION

It's great that we optimized the DBMS's server-side
networking stack and the DBMS wire protocol.

But what about optimizing the client-side when it
receives data from the DBMS?

29

0 2 4 6 8 10 12 14

PostgreSQL
MySQL

Execution + Transfer Deserialization

Convert to Dataframe Other Overhead

Source: Xiaoying Wang Time (minutes)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://wangxiaoying.github.io/

15-721 (Spring 2024)

CONNECTORX

ConnectorX is a client-side library
that provides fast and memory-
efficient loading of data from a
DBMS into Dataframes.
→ Integrated in Polars.

Divides data into chunks to allow
multiple threads to populate
Dataframe arrays in parallel.

30

CONNECTORX: ACCELERATING DATA LOADING
FROM DATABASES TO DATAFRAMES
VLDB 2022

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://github.com/sfu-db/connector-x
https://doi.org/10.14778/3551793.3551847
https://doi.org/10.14778/3551793.3551847

15-721 (Spring 2024)

PARTING THOUGHTS

A DBMS's networking protocol is an often-
overlooked bottleneck for performance.

Kernel bypass methods greatly improve
performance but require more bookkeeping.
→ Probably more useful for internal DBMS communication.

User bypass is an interesting direction for
ephemeral I/Os in DBMSs.

31

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

NEXT CLASS

Query Optimization for the next two weeks.
→ I will update reading list tonight!

32

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

	Introduction
	Slide 1: Database Networking Protocols
	Slide 2: LAST CLASS
	Slide 3: TODAY'S AGENDA

	Access APIs
	Slide 4: DATABASE ACCESS
	Slide 5: DATABASE ACCESS
	Slide 6: DATABASE ACCESS
	Slide 7: DATABASE ACCESS
	Slide 8: OPEN DATABASE CONNECTIVITY
	Slide 9: OPEN DATABASE CONNECTIVITY
	Slide 10: JAVA DATABASE CONNECTIVITY
	Slide 11: JAVA DATABASE CONNECTIVITY

	Network Protocols
	Slide 12: DATABASE NETWORKING PROTOCOLS
	Slide 13: EXISTING PROTOCOLS
	Slide 14: EXISTING PROTOCOLS
	Slide 15: PROTOCOL DESIGN SPACE
	Slide 16: ROW VS. COLUMN LAYOUT
	Slide 17: ROW VS. COLUMN LAYOUT
	Slide 18: COMPRESSION
	Slide 19: DATA SERIALIZATION
	Slide 20: STRING HANDLING
	Slide 21: NETWORK PROTOCOL PERFORMANCE
	Slide 22: NETWORK PROTOCOL PERFORMANCE
	Slide 23: NETWORK PROTOCOL PERFORMANCE
	Slide 24: DATA EXPORT PERFORMANCE

	Kernel Bypass Methods
	Slide 25: OBSERVATION
	Slide 26: KERNEL-BYPASS METHODS
	Slide 27: DATA PLANE DEVELOPMENT KIT (DPDK)
	Slide 28: DATA PLANE DEVELOPMENT KIT (DPDK)
	Slide 29: REMOTE DIRECT MEMORY ACCESS
	Slide 30: IO_URING
	Slide 31: IO_URING
	Slide 32: IO_URING
	Slide 33: IO_URING
	Slide 34: IO_URING
	Slide 35: IO_URING
	Slide 36: IO_URING
	Slide 37: IO_URING

	Userbypass
	Slide 38: I/O BOTTLENECKS
	Slide 39: USER-BYPASS METHODS
	Slide 40: USER-BYPASS METHODS
	Slide 41: CONNECTION POOLING THROUGHPUT

	Client-Side
	Slide 42: OBSERVATION
	Slide 43: CONNECTORX

	Conclusion
	Slide 44: PARTING THOUGHTS
	Slide 45: NEXT CLASS

