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LAST CLASS

Row-oriented database network protocols via 
JDBC/ODBC APIs are sufficient for queries that 
access a small number of tuples.

Large output queries / bulk export operations 
benefit from Arrow native columnar optimizations 
via ADBC.
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NEXT TWO WEEKS

Optimizer Implementations

Query Rewriting

Plan Enumerations

Cost Models
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QUERY OPTIMIZATION

For a given query, find a correct physical execution 
plan for that query with the lowest "cost".

This is the part of a DBMS that is the hardest to 
implement well (proven to be NP-Complete).

No optimizer truly produces the "optimal" plan
→ Use estimation techniques to guess real plan cost.
→ Use heuristics to limit the search space.
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LOGICAL VS. PHYSICAL PLANS

The optimizer generates a mapping of a logical 
algebra expression to the optimal equivalent 
physical algebra expression.

Physical operators define a specific execution 
strategy using an access path.
→ They can depend on the physical format of the data that 

they process (i.e., sorting, compression).
→ Not always a 1:1 mapping from logical to physical.
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COST ESTIMATION

Generate an estimate of the cost of executing a plan 
for the current state of the database.
→ Interactions with other work in DBMS
→ Size of intermediate results
→ Choices of algorithms, access methods
→ Resource utilization (CPU, I/O, network)
→ Data properties (skew, order, placement)

We will discuss this more next week…
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TODAY’S AGENDA

Heuristics

Heuristics + Cost-based Search

Stratified Search

Unified Search

Randomized Search
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HEURISTIC-BASED OPTIMIZATION

Define static rules that transform logical operators 
to a physical plan without a cost model.
→ Perform most restrictive selection early
→ Perform all selections before joins
→ Predicate/Limit/Projection pushdowns
→ Join ordering based on simple rules or cardinality estimates

Examples: INGRES (until mid-1980s) and Oracle 
(until mid-1990s), MongoDB, most new DBMSs.
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QUERY PROCESSING IN A RELATIONAL DATABASE 
MANAGEMENT SYSTEM
VLDB 1979

Stonebraker

https://db.cs.cmu.edu/
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LOGICAL QUERY OPTIMIZATION

Split Conjunctive Predicates

Predicate Pushdown

Replace Cartesian Products with Joins

Projection Pushdown
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Source: Thomas Neumann
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SPLIT CONJUNCTIVE PREDICATES

Decompose predicates 
into their simplest forms 
to make it easier for the 
optimizer to move them 
around.

10

×
ARTIST

ARTIST.ID=APPEARS.ARTIST_ID AND
APPEARS.ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Andy's OG Remix"

s

APPEARS ALBUM

×

ARTIST.NAMEpSELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"
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SPLIT CONJUNCTIVE PREDICATES

Decompose predicates 
into their simplest forms 
to make it easier for the 
optimizer to move them 
around.

10

×
ARTIST APPEARS ALBUM

×

ARTIST.NAMEp
ARTIST.ID=APPEARS.ARTIST_IDs

ALBUM.NAME="Andy's OG Remix"s
APPEARS.ALBUM_ID=ALBUM.IDs

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"
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PREDICATE PUSHDOWN

Move the predicate to 
the lowest point in the 
plan after Cartesian 
products.
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ARTIST APPEARS ALBUM

×

ARTIST.NAMEp

×

ARTIST.ID=APPEARS.ARTIST_IDs

ALBUM.NAME="Andy's OG Remix"s
APPEARS.ALBUM_ID=ALBUM.IDs

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"
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PREDICATE PUSHDOWN

Move the predicate to 
the lowest point in the 
plan after Cartesian 
products.

11

ARTIST APPEARS ALBUM

×

ARTIST.NAMEp

ARTIST.ID=APPEARS.ARTIST_IDs
ALBUM.NAME="Andy's OG Remix"s

APPEARS.ALBUM_ID=ALBUM.IDs
×

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"
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REPLACE CARTESIAN PRODUCTS

Replace all Cartesian 
Products with inner 
joins using the join 
predicates.
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ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s

×
ARTIST.ID=APPEARS.ARTIST_IDs

APPEARS.ALBUM_ID=ALBUM.IDs
×

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"
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REPLACE CARTESIAN PRODUCTS

Replace all Cartesian 
Products with inner 
joins using the join 
predicates.
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ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s
ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"

https://db.cs.cmu.edu/
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PROJECTION PUSHDOWN

Eliminate redundant 
attributes before pipeline 
breakers to reduce 
materialization cost.

13

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

ALBUM.NAME="Andy's OG Remix"s

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"
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PROJECTION PUSHDOWN

Eliminate redundant 
attributes before pipeline 
breakers to reduce 
materialization cost.

13

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s

IDpARTIST.NAME,
APPEARS.ALBUM_IDp

ID,NAMEp ARTIST_ID,
ALBUM_IDp

ARTIST.ID=
APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"

https://db.cs.cmu.edu/
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INGRES OPTIMIZER

14

Step #1: Decompose into single-value queries 

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
  FROM ALBUM
 WHERE ALBUM.NAME="Andy's OG Remix"

Query #1

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, TEMP1
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
   AND APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
 ORDER BY APPEARS.ID

Query #2

Retrieve the names of people that appear on Andy’s 
mixtape ordered by their artist id.

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
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SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
  FROM ALBUM
 WHERE ALBUM.NAME="Andy's OG Remix"

Query #1

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, TEMP1
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
   AND APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
 ORDER BY APPEARS.ID

Query #2

Retrieve the names of people that appear on Andy’s 
mixtape ordered by their artist id.

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID
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INGRES OPTIMIZER

14

Step #1: Decompose into single-value queries 

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
  FROM ALBUM
 WHERE ALBUM.NAME="Andy's OG Remix"

Query #1

SELECT APPEARS.ARTIST_ID INTO TEMP2
  FROM APPEARS, TEMP1
 WHERE APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
 ORDER BY APPEARS.ARTIST_ID

Query #3

SELECT ARTIST.NAME
  FROM ARTIST, TEMP2
 WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

Query #4

Retrieve the names of people that appear on Andy’s 
mixtape ordered by their artist id.

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID
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INGRES OPTIMIZER

14

Step #1: Decompose into single-value queries 

SELECT APPEARS.ARTIST_ID INTO TEMP2
  FROM APPEARS, TEMP1
 WHERE APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
 ORDER BY APPEARS.ARTIST_ID

Query #3

SELECT ARTIST.NAME
  FROM ARTIST, TEMP2
 WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

Query #4Step #2: Substitute the values from
               Query#1 → Query #3 → Query #4

ALBUM_ID

9999

Retrieve the names of people that appear on Andy’s 
mixtape ordered by their artist id.

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID
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INGRES OPTIMIZER

14

Step #1: Decompose into single-value queries 

SELECT ARTIST.NAME
  FROM ARTIST, TEMP2
 WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

Query #4Step #2: Substitute the values from
               Query#1 → Query #3 → Query #4

ALBUM_ID

9999

SELECT APPEARS.ARTIST_ID
  FROM APPEARS
 WHERE APPEARS.ALBUM_ID=9999
 ORDER BY APPEARS.ARTIST_ID

Retrieve the names of people that appear on Andy’s 
mixtape ordered by their artist id.

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID
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INGRES OPTIMIZER

14

Step #1: Decompose into single-value queries 

SELECT ARTIST.NAME
  FROM ARTIST, TEMP2
 WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

Query #4Step #2: Substitute the values from
               Query#1 → Query #3 → Query #4

ALBUM_ID

9999

ARTIST_ID

123
456

Retrieve the names of people that appear on Andy’s 
mixtape ordered by their artist id.

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID
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INGRES OPTIMIZER

14

Step #1: Decompose into single-value queries 

Step #2: Substitute the values from
               Query#1 → Query #3 → Query #4

SELECT ARTIST.NAME
  FROM ARTIST
 WHERE ARTIST.ARTIST_ID=123

SELECT ARTIST.NAME
  FROM ARTIST
 WHERE ARTIST.ARTIST_ID=456

ALBUM_ID

9999

ARTIST_ID

123
456

Retrieve the names of people that appear on Andy’s 
mixtape ordered by their artist id.

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID
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INGRES OPTIMIZER

14

Step #1: Decompose into single-value queries 

Step #2: Substitute the values from
               Query#1 → Query #3 → Query #4

ALBUM_ID

9999

ARTIST_ID

123
456

NAME

O.D.B.

NAME

DJ Premier

Retrieve the names of people that appear on Andy’s 
mixtape ordered by their artist id.

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID
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HEURISTIC-BASED OPTIMIZATION

Advantages:
→ Easy to implement and debug.
→ Works reasonably well and is fast for simple queries.

Disadvantages:
→ Relies on magic constants that predict the efficacy of a 

planning decision.
→ Nearly impossible to generate good plans when operators 

have complex inter-dependencies.

15
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HEURISTICS + COST-BASED SEARCH

First use static rules to perform initial 
logical→logical optimizations.
Then enumerate plans using physical→logical 
transformations to find best plan according to a cost 
model.

Examples: System R, early IBM DB2, most open-
source DBMSs.

16

ACCESS PATH SELECTION IN A RELATIONAL DATABASE 
MANAGEMENT SYSTEM
SIGMOD 1979

Selinger

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://dl.acm.org/citation.cfm?id=582099
http://dl.acm.org/citation.cfm?id=582099
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PHYSICAL QUERY OPTIMIZATION

Transform a query plan's logical operators into 
physical operators.
→ Add more execution information
→ Select indexes / access paths
→ Choose operator implementations
→ Choose when to materialize (i.e., temp tables).

This stage must support cost model estimates.

17
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PLAN ENUMERATION

Approach #1: Generative / Bottom-Up
→ Start with nothing and then iteratively assemble and add 

building blocks to generate a query plan. 
→ Examples: System R, Starburst

Approach #2: Transformation / Top-Down
→ Start with the outcome that the query wants, and then 

transform it to equivalent alternative sub-plans to find the 
optimal plan that gets to that goal.

→ Examples: Volcano, Cascades

18

ON THE CORRECT AND COMPLETE ENUMERATION 
OF THE CORE SEARCH SPACE
SIGMOD 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/citation.cfm?id=2465314
https://dl.acm.org/citation.cfm?id=2465314
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SYSTEM R OPTIMIZER

Break query up into blocks and generate the logical 
operators for each block.

For each logical operator, generate a set of physical 
operators that implement it.
→ All combinations of join algorithms and access paths

Then iteratively construct a "left-deep" join tree 
that minimizes the estimated amount of work to 
execute the plan.

19
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SYSTEM R OPTIMIZER

20

Step #1: Choose the best access paths to 
each table 

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

Retrieve the names of people that appear on Andy’s 
mixtape ordered by their artist id.

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
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SYSTEM R OPTIMIZER

20

Step #1: Choose the best access paths to 
each table 

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

ARTIST  ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM   ⨝ ARTIST
ALBUM   ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST  ⨝ ALBUM
ARTIST  ×  ALBUM   ⨝ APPEARS
ALBUM   × ARTIST  ⨝ APPEARS
⋮           ⋮          ⋮

Step #2: Enumerate all possible join 
orderings for tables

Retrieve the names of people that appear on Andy’s 
mixtape ordered by their artist id.

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID
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SYSTEM R OPTIMIZER

20

Step #1: Choose the best access paths to 
each table 

Step #3: Determine the join ordering 
with the lowest cost

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

ARTIST  ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM   ⨝ ARTIST
ALBUM   ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST  ⨝ ALBUM
ARTIST  ×  ALBUM   ⨝ APPEARS
ALBUM   × ARTIST  ⨝ APPEARS
⋮           ⋮          ⋮

Step #2: Enumerate all possible join 
orderings for tables

Retrieve the names of people that appear on Andy’s 
mixtape ordered by their artist id.

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
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SYSTEM R OPTIMIZER

21

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) MERGE_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A2,A3) HASH_JOIN(A3,A2) MERGE_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID 

APPEARS.ALBUM_ID=ALBUM.ID

Logical Op

Physical Op

https://db.cs.cmu.edu/
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SYSTEM R OPTIMIZER

21

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID 

APPEARS.ALBUM_ID=ALBUM.ID

Logical Op

Physical Op
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SYSTEM R OPTIMIZER

21

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) MERGE_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) MERGE_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •MERGE_JOIN(A3⨝A2,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID 

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID APPEARS.ARTIST_ID=ARTIST.IDAPPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

https://db.cs.cmu.edu/
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SYSTEM R OPTIMIZER

21

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID 

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID APPEARS.ARTIST_ID=ARTIST.IDAPPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op
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SYSTEM R OPTIMIZER

21

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID 

APPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op
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SYSTEM R OPTIMIZER

21

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID 

APPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

The query has ORDER BY on 
ARTIST.ID but the logical plans 
do not contain sorting properties.

Hack: Keep track of best plans with and 
without data in proper physical form, 
and then check whether tacking on a sort 
operator at the end is better.

https://db.cs.cmu.edu/
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SEARCH TERMINATION

Approach #1: Wall-clock Time
→ Stop after the optimizer runs for some length of time.

Approach #2: Cost Threshold
→ Stop when the optimizer finds a plan that has a lower cost 

than some threshold.

Approach #3: Exhaustion
→ Stop when there are no more enumerations of the target 

plan. Usually done per sub-plan/group.

Approach #4: Transformation Count
→ Stop after a certain number of transformations have been 

considered.

22
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HEURISTICS + COST-BASED SEARCH

Advantages:
→ Usually finds a reasonable plan without having to perform 

an exhaustive search.

Disadvantages:
→ All the same problems as the heuristic-only approach.
→ Left-deep join trees are not always optimal.
→ Must take in consideration the physical properties of data 

in the cost model (e.g., sort order).

23
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OBSERVATION

Writing query transformation rules in a procedural 
language is hard and error-prone.
→ No easy way to verify that the rules are correct without 

running a lot of fuzz tests.
→ Generation of physical operators per logical operator is 

decoupled from deeper semantics about query.

A better approach is to use a declarative DSL to 
write the transformation rules and then have the 
optimizer enforce them during planning.

24
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OPTIMIZER GENERATORS

Framework to allow a DBMS implementer to write 
the declarative rules for optimizing queries.
→ Separate the search strategy from the data model.
→ Separate the transformation rules and logical operators 

from physical rules and physical operators.

The implementation of the optimizer's pattern 
matching method and transformation rules can be 
independent of its search strategy.

25
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OPTIMIZER GENERATORS

Choice #1: Stratified Search
→ Planning is done in multiple stages (heuristics then cost-

based search).
→ Examples: Starburst, CockroachDB

Choice #2: Unified Search
→ Perform query planning all at once.
→ Examples: Cascades, OPT++, SQL Server

26
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STRATIFIED SEARCH

First rewrite the logical query plan using 
transformation rules.
→ The engine checks whether the transformation is allowed 

before it can be applied.
→ Cost is never considered in this step.

Then perform a cost-based search to map the logical 
plan to a physical plan.

27
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STARBURST OPTIMIZER

Better implementation of the System R optimizer 
that uses declarative rules.

Stage #1: Query Rewrite
→ Compute a SQL-block-level, relational calculus-like 

representation of queries.

Stage #2: Plan Optimization
→ Execute a System R-style (bottoms-up) dynamic 

programming phase once query rewrite has completed.

Example: Latest version of IBM DB2

28

GRAMMAR-LIKE FUNCTIONAL RULES FOR REPRESENTING 
QUERY OPTIMIZATION ALTERNATIVES
SIGMOD 1988

Lohman
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STARBURST OPTIMIZER

Better implementation of the System R optimizer 
that uses declarative rules.

Stage #1: Query Rewrite
→ Compute a SQL-block-level, relational calculus-like 

representation of queries.

Stage #2: Plan Optimization
→ Execute a System R-style (bottoms-up) dynamic 

programming phase once query rewrite has completed.

Example: Latest version of IBM DB2
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STARBURST OPTIMIZER

Advantages:
→ Works well in practice with fast performance.

Disadvantages:
→ Difficult to assign priorities to transformations
→ Some transformations are difficult to assess without 

computing multiple cost estimations.
→ Rules maintenance is a huge pain because they are written 

in IBM's Query Graph Model (QGM) DSL.

29
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UNIFIED SEARCH

Unify the notion of both logical→logical and 
logical→physical transformations.
→ No need for separate stages because everything is 

transformations.

This approach generates many transformations, so 
it makes heavy use of memoization to reduce 
redundant work.

30
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VOLCANO OPTIMIZER

General purpose cost-based query optimizer, based 
on equivalence rules on algebras.
→ Easily add new operations and equivalence rules.
→ Treats physical properties of data as first-class entities 

during planning.
→ Top-down approach (backward chaining) using branch-

and-bound search.

Example: Academic prototypes

31

THE VOLCANO OPTIMIZER GENERATOR: 
EXTENSIBILITY AND EFFICIENT SEARCH
ICDE 1993

Graefe
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TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION
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Invoke rules to create new nodes 
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→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 
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ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)
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Start with a logical plan of what 
we want the query to be.
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Physical Op
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TOP-DOWN OPTIMIZATION
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ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
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JOIN(A,B) to HASH_JOIN(A,B)
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TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)
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MERGE_JOIN(A1⨝A2,A3)
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Start with a logical plan of what 
we want the query to be.
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Physical Op
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TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

MERGE_JOIN(A1,A2)

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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and traverse tree.
→ Logical→Logical:
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that require input to have 
certain properties.
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TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)
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that require input to have 
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ARTIST ALBUM APPEARS

QUICKSORT(A1.ID)

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS
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MERGE_JOIN(A1,A2)
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TOP-DOWN OPTIMIZATION
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ORDER-BY(ARTIST.ID)
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and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have 
certain properties.

ARTIST ALBUM APPEARS

HASH_JOIN(A1⨝A2,A3)

QUICKSORT(A1.ID)

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)
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we want the query to be.

Logical Op

Physical Op
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we want the query to be.
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VOLCANO OPTIMIZER

Advantages:
→ Use declarative rules to generate transformations.
→ Better extensibility with an efficient search engine. Reduce 

redundant estimations using memoization.

Disadvantages:
→ All equivalence classes are completely expanded to generate 

all possible logical operators before the optimization 
search.

→ Not easy to modify predicates.

33
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CASCADES OPTIMIZER

Object-oriented implementation of the previous 
Volcano query optimizer.
→ Top-down approach (backward chaining) using branch-

and-bound search.

Supports expression re-writing through a direct 
mapping function rather than an exhaustive search.

34

THE CASCADES FRAMEWORK FOR 
QUERY OPTIMIZATION
IEEE DATA ENGINEERING BULLETIN 1995

Graefe

EFFICIENCY IN THE COLUMBIA 
DATABASE QUERY OPTIMIZER
PORTLAND STATE UNIVERSITY MS THESIS 1998
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CASCADES: KEY IDEAS

Optimization tasks as data structures.
→ Patterns to match + Transformation Rule to apply

Rules to place property enforcers.
→ Ensures the optimizer generates correct plans.

Ordering of moves by promise.
→ Dynamic task priorities to find optimal plan more quickly.

Predicates as logical/physical operators.
→ Use same pattern/rule engine for expressions.

35

EFFICIENCY IN THE COLUMBIA 
DATABASE QUERY OPTIMIZER
PORTLAND STATE UNIVERSITY MS THESIS 1998
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CASCADES: EXPRESSIONS

An expression represents some operation in the 
query with zero or more input expressions.
→ Optimizer needs to quickly determine whether two 

expressions are equivalent.

Logical Expression: (A ⨝ B) ⨝ C

Physical Expression: (ASeq ⨝HJ BSeq) ⨝NL CIdx

36

SELECT * FROM A
  JOIN B ON A.id = B.id
  JOIN C ON C.id = A.id;
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CASCADES: GROUPS

A group is a set of logically equivalent logical and 
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from selecting 

the allowable physical operators for the corresponding 
logical forms.

37

Output:
[ABC]

Properties:
None

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
 ⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
 ⋮

G
ro

u
p
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→ All logical forms of an expression.
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the allowable physical operators for the corresponding 
logical forms.

37

Output:
[ABC]

Properties:
None

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
 ⋮

Physical Exps
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 ⋮

Equivalent
Expressions

G
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u
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CASCADES: MULTI-EXPRESSION

Instead of explicitly instantiating all possible 
expressions in a group, the optimizer implicitly 
represents redundant expressions in a group as a 
multi-expression.
→ This reduces the number of transformations, storage 

overhead, and repeated cost estimations.

38

Output:
[ABC]

Properties:
None

Logical Multi-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [A]⨝[BC]
 ⋮

Physical Multi-Exps
1. [AB]⨝SM[C]
2. [AB]⨝HJ[C]
3. [AB]⨝NL[C]
4. [BC]⨝SM[A]
 ⋮
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CASCADES: RULES

A rule is a transformation of an expression to a 
logically equivalent expression.
→ Transformation Rule: Logical to Logical
→ Implementation Rule: Logical to Physical

Each rule is represented as a pair of attributes:
→ Pattern: Defines the structure of the logical expression 

that can be applied to the rule.
→ Substitute: Defines the structure of the result after 

applying the rule.

39
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Pattern

CASCADES: RULES

40

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

Transformation Rule
Rotate Left-to-Right

Implementation Rule
EQJOIN→SORTMERGE

A⨝[BC]

GET(A)

GET(B) GET(C)

B⨝C

[AB]⨝SMC

A⨝SMB

GET(A) GET(B)

GET(C)

[AB]⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan
Group

Logical Expr

Physical Expr

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
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CASCADES: MEMO TABLE

Stores all previously explored alternatives in a 
compact graph structure / hash table.

Equivalent operator trees and their corresponding 
plans are stored together in groups.

Provides an overview of the optimizer's search 
progress that is used in multiple ways:
→ Transformation Result Memorization
→ Duplicate Group Detection
→ Property + Cost Management.

41

https://db.cs.cmu.edu/
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PRINCIPLE OF OPTIMALITY

Every sub-plan of an optimal plan is itself optimal.

This allows the optimizer to restrict the search 
space to a smaller set of expressions.
→ The optimizer never has to consider a plan containing sub-

plan P1 that has a greater cost than equivalent plan P2 with 
the same physical properties.

42

EXPLOITING UPPER AND LOWER BOUNDS IN 
TOP-DOWN QUERY OPTIMIZATION
IDEAS 2001

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/shapiro-ideas2001.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/shapiro-ideas2001.pdf
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CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
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CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
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CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
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CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Cost: 10

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

https://db.cs.cmu.edu/
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CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

https://db.cs.cmu.edu/
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CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
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CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20
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CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20
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CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20
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CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

Cost: 50+(10+20)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

[A]⨝HJ[B] 80
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CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Properties:
None

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

[A]⨝HJ[B] 80
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CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Properties:
None

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝HJ[B] 80
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https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Properties:
None

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝HJ[B] 80
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CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Properties:
None

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

Cost: 40+(80+5)

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝HJ[B] 80

([A]⨝HJ[B])⨝HJ[C] 125
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CASCADES IMPLEMENTATIONS

Standalone:
→ Wisconsin OPT++ (1990s)
→ Portland State Columbia (1990s)
→ Greenplum Orca (2010s)
→ Apache Calcite (2010s)

Integrated:
→ Microsoft SQL Server (1990s)
→ Tandem NonStop SQL (1990s)
→ CockroachDB (2010s)

44

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://pages.cs.wisc.edu/~navin/research/apg.html
http://web.cecs.pdx.edu/~len/Columbia/
https://github.com/greenplum-db/gporca
https://calcite.apache.org/
http://www.vldb.org/conf/1996/P592.PDF
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RANDOMIZED ALGORITHMS

Perform a random walk over a solution space of all 
possible (valid) plans for a query.

Continue searching until a cost threshold is reached 
or the optimizer runs for a length of time.

Examples: Postgres’ genetic algorithm.

45
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SIMULATED ANNEALING

Start with a query plan that is generated using the 
heuristic-only approach.

Compute random permutations of operators (e.g., 
swap the join order of two tables):
→ Always accept a change that reduces cost.
→ Only accept a change that increases cost with some 

probability.
→ Reject any change that violates correctness (e.g., sort 

ordering).

46

QUERY OPTIMIZATION BY SIMULATED ANNEALING 
SIGMOD 1987

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://dl.acm.org/citation.cfm?id=38722
http://dl.acm.org/citation.cfm?id=38722
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POSTGRES GENETIC OPTIMIZER

More complicated queries use a genetic algorithm 
that selects join orderings (GEQO).

At the beginning of each round, generate different 
variants of the query plan.

Select the plans that have the lowest cost and 
permute them with other plans. Repeat.
→ The mutator function only generates valid plans.

47

Source: Postgres Documentation

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://www.postgresql.org/docs/9.4/static/geqo-pg-intro.html
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POSTGRES GENETIC OPTIMIZER

48

1st Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100
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POSTGRES GENETIC OPTIMIZER

48

Best:100
1st Generation
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NL
Cost:
300

T R
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NL

HJ
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HJ

HJ

Cost:
200

Cost:
100
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POSTGRES GENETIC OPTIMIZER

48

Best:100
1st Generation

R S

T

NL

NL
Cost:
300

T R

S
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Cost:
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POSTGRES GENETIC OPTIMIZER

48

Best:100
1st Generation

R S

T

NL

NL
Cost:
300

T R
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HJ

HJ

Cost:
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Cost:
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RANDOMIZED ALGORITHMS

Advantages:
→ Jumping around the search space randomly allows the 

optimizer to get out of local minimums.
→ Low memory overhead (if no history is kept).

Disadvantages:
→ Difficult to determine why the DBMS may have chosen a 

plan.
→ Must do extra work to ensure that query plans are 

deterministic.
→ Still must implement correctness rules.

49
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PARTING THOUGHTS

Query optimization is hard.

This difficulty is why NoSQL systems didn’t 
implement optimizers (at first).

Playlist of CMU-DB Query Optimizer talks:
→ https://cmudb.io/youtube-optimizers

50
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NEXT CLASS

German-style Unnesting Sub-Queries

German-style Dynamic Programming
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