
ADVANCED
DATABASE

SYSTEMS

Andy Pavlo
CMU 15-721
Spring 202413

Query
Optimizer

Implementation
Part 1

https://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/
https://db.cs.cmu.edu/

15-721 (Spring 2024)

LAST CLASS

Row-oriented database network protocols via
JDBC/ODBC APIs are sufficient for queries that
access a small number of tuples.

Large output queries / bulk export operations
benefit from Arrow native columnar optimizations
via ADBC.

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://arrow.apache.org/adbc/

15-721 (Spring 2024)

NEXT TWO WEEKS

Optimizer Implementations

Query Rewriting

Plan Enumerations

Cost Models

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

QUERY OPTIMIZATION

For a given query, find a correct physical execution
plan for that query with the lowest "cost".

This is the part of a DBMS that is the hardest to
implement well (proven to be NP-Complete).

No optimizer truly produces the "optimal" plan
→ Use estimation techniques to guess real plan cost.
→ Use heuristics to limit the search space.

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

LOGICAL VS. PHYSICAL PLANS

The optimizer generates a mapping of a logical
algebra expression to the optimal equivalent
physical algebra expression.

Physical operators define a specific execution
strategy using an access path.
→ They can depend on the physical format of the data that

they process (i.e., sorting, compression).
→ Not always a 1:1 mapping from logical to physical.

5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

COST ESTIMATION

Generate an estimate of the cost of executing a plan
for the current state of the database.
→ Interactions with other work in DBMS
→ Size of intermediate results
→ Choices of algorithms, access methods
→ Resource utilization (CPU, I/O, network)
→ Data properties (skew, order, placement)

We will discuss this more next week…

6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TODAY’S AGENDA

Heuristics

Heuristics + Cost-based Search

Stratified Search

Unified Search

Randomized Search

7

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

HEURISTIC-BASED OPTIMIZATION

Define static rules that transform logical operators
to a physical plan without a cost model.
→ Perform most restrictive selection early
→ Perform all selections before joins
→ Predicate/Limit/Projection pushdowns
→ Join ordering based on simple rules or cardinality estimates

Examples: INGRES (until mid-1980s) and Oracle
(until mid-1990s), MongoDB, most new DBMSs.

8

QUERY PROCESSING IN A RELATIONAL DATABASE
MANAGEMENT SYSTEM
VLDB 1979

Stonebraker

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://dx.doi.org/10.1109/VLDB.1979.718156
http://dx.doi.org/10.1109/VLDB.1979.718156

15-721 (Spring 2024)

LOGICAL QUERY OPTIMIZATION

Split Conjunctive Predicates

Predicate Pushdown

Replace Cartesian Products with Joins

Projection Pushdown

9

Source: Thomas Neumann

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://db.in.tum.de/teaching/ws1819/queryopt/?lang=en

15-721 (Spring 2024)

SPLIT CONJUNCTIVE PREDICATES

Decompose predicates
into their simplest forms
to make it easier for the
optimizer to move them
around.

10

×
ARTIST

ARTIST.ID=APPEARS.ARTIST_ID AND
APPEARS.ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Andy's OG Remix"

s

APPEARS ALBUM

×

ARTIST.NAMEpSELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SPLIT CONJUNCTIVE PREDICATES

Decompose predicates
into their simplest forms
to make it easier for the
optimizer to move them
around.

10

×
ARTIST APPEARS ALBUM

×

ARTIST.NAMEp
ARTIST.ID=APPEARS.ARTIST_IDs

ALBUM.NAME="Andy's OG Remix"s
APPEARS.ALBUM_ID=ALBUM.IDs

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PREDICATE PUSHDOWN

Move the predicate to
the lowest point in the
plan after Cartesian
products.

11

ARTIST APPEARS ALBUM

×

ARTIST.NAMEp

×

ARTIST.ID=APPEARS.ARTIST_IDs

ALBUM.NAME="Andy's OG Remix"s
APPEARS.ALBUM_ID=ALBUM.IDs

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PREDICATE PUSHDOWN

Move the predicate to
the lowest point in the
plan after Cartesian
products.

11

ARTIST APPEARS ALBUM

×

ARTIST.NAMEp

ARTIST.ID=APPEARS.ARTIST_IDs
ALBUM.NAME="Andy's OG Remix"s

APPEARS.ALBUM_ID=ALBUM.IDs
×

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

REPLACE CARTESIAN PRODUCTS

Replace all Cartesian
Products with inner
joins using the join
predicates.

12

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s

×
ARTIST.ID=APPEARS.ARTIST_IDs

APPEARS.ALBUM_ID=ALBUM.IDs
×

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

REPLACE CARTESIAN PRODUCTS

Replace all Cartesian
Products with inner
joins using the join
predicates.

12

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s
ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PROJECTION PUSHDOWN

Eliminate redundant
attributes before pipeline
breakers to reduce
materialization cost.

13

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

ALBUM.NAME="Andy's OG Remix"s

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PROJECTION PUSHDOWN

Eliminate redundant
attributes before pipeline
breakers to reduce
materialization cost.

13

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s

IDpARTIST.NAME,
APPEARS.ALBUM_IDp

ID,NAMEp ARTIST_ID,
ALBUM_IDp

ARTIST.ID=
APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

INGRES OPTIMIZER

14

Step #1: Decompose into single-value queries

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
 FROM ALBUM
 WHERE ALBUM.NAME="Andy's OG Remix"

Query #1

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, TEMP1
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
 ORDER BY APPEARS.ID

Query #2

Retrieve the names of people that appear on Andy’s
mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

INGRES OPTIMIZER

14

Step #1: Decompose into single-value queries

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
 FROM ALBUM
 WHERE ALBUM.NAME="Andy's OG Remix"

Query #1

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, TEMP1
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
 ORDER BY APPEARS.ID

Query #2

Retrieve the names of people that appear on Andy’s
mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

INGRES OPTIMIZER

14

Step #1: Decompose into single-value queries

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
 FROM ALBUM
 WHERE ALBUM.NAME="Andy's OG Remix"

Query #1

SELECT APPEARS.ARTIST_ID INTO TEMP2
 FROM APPEARS, TEMP1
 WHERE APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
 ORDER BY APPEARS.ARTIST_ID

Query #3

SELECT ARTIST.NAME
 FROM ARTIST, TEMP2
 WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

Query #4

Retrieve the names of people that appear on Andy’s
mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

INGRES OPTIMIZER

14

Step #1: Decompose into single-value queries

SELECT APPEARS.ARTIST_ID INTO TEMP2
 FROM APPEARS, TEMP1
 WHERE APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
 ORDER BY APPEARS.ARTIST_ID

Query #3

SELECT ARTIST.NAME
 FROM ARTIST, TEMP2
 WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

Query #4Step #2: Substitute the values from
 Query#1 → Query #3 → Query #4

ALBUM_ID

9999

Retrieve the names of people that appear on Andy’s
mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

INGRES OPTIMIZER

14

Step #1: Decompose into single-value queries

SELECT ARTIST.NAME
 FROM ARTIST, TEMP2
 WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

Query #4Step #2: Substitute the values from
 Query#1 → Query #3 → Query #4

ALBUM_ID

9999

SELECT APPEARS.ARTIST_ID
 FROM APPEARS
 WHERE APPEARS.ALBUM_ID=9999
 ORDER BY APPEARS.ARTIST_ID

Retrieve the names of people that appear on Andy’s
mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

INGRES OPTIMIZER

14

Step #1: Decompose into single-value queries

SELECT ARTIST.NAME
 FROM ARTIST, TEMP2
 WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

Query #4Step #2: Substitute the values from
 Query#1 → Query #3 → Query #4

ALBUM_ID

9999

ARTIST_ID

123
456

Retrieve the names of people that appear on Andy’s
mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

INGRES OPTIMIZER

14

Step #1: Decompose into single-value queries

Step #2: Substitute the values from
 Query#1 → Query #3 → Query #4

SELECT ARTIST.NAME
 FROM ARTIST
 WHERE ARTIST.ARTIST_ID=123

SELECT ARTIST.NAME
 FROM ARTIST
 WHERE ARTIST.ARTIST_ID=456

ALBUM_ID

9999

ARTIST_ID

123
456

Retrieve the names of people that appear on Andy’s
mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

INGRES OPTIMIZER

14

Step #1: Decompose into single-value queries

Step #2: Substitute the values from
 Query#1 → Query #3 → Query #4

ALBUM_ID

9999

ARTIST_ID

123
456

NAME

O.D.B.

NAME

DJ Premier

Retrieve the names of people that appear on Andy’s
mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

HEURISTIC-BASED OPTIMIZATION

Advantages:
→ Easy to implement and debug.
→ Works reasonably well and is fast for simple queries.

Disadvantages:
→ Relies on magic constants that predict the efficacy of a

planning decision.
→ Nearly impossible to generate good plans when operators

have complex inter-dependencies.

15

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

HEURISTIC-BASED OPTIMIZATION

Advantages:
→ Easy to implement and debug.
→ Works reasonably well and is fast for simple queries.

Disadvantages:
→ Relies on magic constants that predict the efficacy of a

planning decision.
→ Nearly impossible to generate good plans when operators

have complex inter-dependencies.

15

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

HEURISTICS + COST-BASED SEARCH

First use static rules to perform initial
logical→logical optimizations.
Then enumerate plans using physical→logical
transformations to find best plan according to a cost
model.

Examples: System R, early IBM DB2, most open-
source DBMSs.

16

ACCESS PATH SELECTION IN A RELATIONAL DATABASE
MANAGEMENT SYSTEM
SIGMOD 1979

Selinger

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://dl.acm.org/citation.cfm?id=582099
http://dl.acm.org/citation.cfm?id=582099

15-721 (Spring 2024)

PHYSICAL QUERY OPTIMIZATION

Transform a query plan's logical operators into
physical operators.
→ Add more execution information
→ Select indexes / access paths
→ Choose operator implementations
→ Choose when to materialize (i.e., temp tables).

This stage must support cost model estimates.

17

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PLAN ENUMERATION

Approach #1: Generative / Bottom-Up
→ Start with nothing and then iteratively assemble and add

building blocks to generate a query plan.
→ Examples: System R, Starburst

Approach #2: Transformation / Top-Down
→ Start with the outcome that the query wants, and then

transform it to equivalent alternative sub-plans to find the
optimal plan that gets to that goal.

→ Examples: Volcano, Cascades

18

ON THE CORRECT AND COMPLETE ENUMERATION
OF THE CORE SEARCH SPACE
SIGMOD 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/citation.cfm?id=2465314
https://dl.acm.org/citation.cfm?id=2465314

15-721 (Spring 2024)

SYSTEM R OPTIMIZER

Break query up into blocks and generate the logical
operators for each block.

For each logical operator, generate a set of physical
operators that implement it.
→ All combinations of join algorithms and access paths

Then iteratively construct a "left-deep" join tree
that minimizes the estimated amount of work to
execute the plan.

19

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SYSTEM R OPTIMIZER

20

Step #1: Choose the best access paths to
each table

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

Retrieve the names of people that appear on Andy’s
mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SYSTEM R OPTIMIZER

20

Step #1: Choose the best access paths to
each table

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

ARTIST ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM ⨝ ARTIST
ALBUM ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST ⨝ ALBUM
ARTIST × ALBUM ⨝ APPEARS
ALBUM × ARTIST ⨝ APPEARS
⋮ ⋮ ⋮

Step #2: Enumerate all possible join
orderings for tables

Retrieve the names of people that appear on Andy’s
mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SYSTEM R OPTIMIZER

20

Step #1: Choose the best access paths to
each table

Step #3: Determine the join ordering
with the lowest cost

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

ARTIST ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM ⨝ ARTIST
ALBUM ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST ⨝ ALBUM
ARTIST × ALBUM ⨝ APPEARS
ALBUM × ARTIST ⨝ APPEARS
⋮ ⋮ ⋮

Step #2: Enumerate all possible join
orderings for tables

Retrieve the names of people that appear on Andy’s
mixtape ordered by their artist id.

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Andy's OG Remix"
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SYSTEM R OPTIMIZER

21

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) MERGE_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A2,A3) HASH_JOIN(A3,A2) MERGE_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SYSTEM R OPTIMIZER

21

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SYSTEM R OPTIMIZER

21

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) MERGE_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) MERGE_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •MERGE_JOIN(A3⨝A2,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID APPEARS.ARTIST_ID=ARTIST.IDAPPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SYSTEM R OPTIMIZER

21

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID APPEARS.ARTIST_ID=ARTIST.IDAPPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SYSTEM R OPTIMIZER

21

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SYSTEM R OPTIMIZER

21

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

The query has ORDER BY on
ARTIST.ID but the logical plans
do not contain sorting properties.

Hack: Keep track of best plans with and
without data in proper physical form,
and then check whether tacking on a sort
operator at the end is better.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SEARCH TERMINATION

Approach #1: Wall-clock Time
→ Stop after the optimizer runs for some length of time.

Approach #2: Cost Threshold
→ Stop when the optimizer finds a plan that has a lower cost

than some threshold.

Approach #3: Exhaustion
→ Stop when there are no more enumerations of the target

plan. Usually done per sub-plan/group.

Approach #4: Transformation Count
→ Stop after a certain number of transformations have been

considered.

22

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

HEURISTICS + COST-BASED SEARCH

Advantages:
→ Usually finds a reasonable plan without having to perform

an exhaustive search.

Disadvantages:
→ All the same problems as the heuristic-only approach.
→ Left-deep join trees are not always optimal.
→ Must take in consideration the physical properties of data

in the cost model (e.g., sort order).

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OBSERVATION

Writing query transformation rules in a procedural
language is hard and error-prone.
→ No easy way to verify that the rules are correct without

running a lot of fuzz tests.
→ Generation of physical operators per logical operator is

decoupled from deeper semantics about query.

A better approach is to use a declarative DSL to
write the transformation rules and then have the
optimizer enforce them during planning.

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OPTIMIZER GENERATORS

Framework to allow a DBMS implementer to write
the declarative rules for optimizing queries.
→ Separate the search strategy from the data model.
→ Separate the transformation rules and logical operators

from physical rules and physical operators.

The implementation of the optimizer's pattern
matching method and transformation rules can be
independent of its search strategy.

25

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OPTIMIZER GENERATORS

Choice #1: Stratified Search
→ Planning is done in multiple stages (heuristics then cost-

based search).
→ Examples: Starburst, CockroachDB

Choice #2: Unified Search
→ Perform query planning all at once.
→ Examples: Cascades, OPT++, SQL Server

26

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=wHo-VtzTHx0&list=PLSE8ODhjZXjYPyrUG_YxqYPS7wjWY6gYN&index=4
https://pages.cs.wisc.edu/~navin/research/apg.html

15-721 (Spring 2024)

STRATIFIED SEARCH

First rewrite the logical query plan using
transformation rules.
→ The engine checks whether the transformation is allowed

before it can be applied.
→ Cost is never considered in this step.

Then perform a cost-based search to map the logical
plan to a physical plan.

27

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

STARBURST OPTIMIZER

Better implementation of the System R optimizer
that uses declarative rules.

Stage #1: Query Rewrite
→ Compute a SQL-block-level, relational calculus-like

representation of queries.

Stage #2: Plan Optimization
→ Execute a System R-style (bottoms-up) dynamic

programming phase once query rewrite has completed.

Example: Latest version of IBM DB2

28

GRAMMAR-LIKE FUNCTIONAL RULES FOR REPRESENTING
QUERY OPTIMIZATION ALTERNATIVES
SIGMOD 1988

Lohman

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://dl.acm.org/citation.cfm?id=50204
http://dl.acm.org/citation.cfm?id=50204

15-721 (Spring 2024)

STARBURST OPTIMIZER

Better implementation of the System R optimizer
that uses declarative rules.

Stage #1: Query Rewrite
→ Compute a SQL-block-level, relational calculus-like

representation of queries.

Stage #2: Plan Optimization
→ Execute a System R-style (bottoms-up) dynamic

programming phase once query rewrite has completed.

Example: Latest version of IBM DB2

28

GRAMMAR-LIKE FUNCTIONAL RULES FOR REPRESENTING
QUERY OPTIMIZATION ALTERNATIVES
SIGMOD 1988

Lohman

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://dl.acm.org/citation.cfm?id=50204
http://dl.acm.org/citation.cfm?id=50204
https://perspectives.mvdirona.com/2017/12/1187/

15-721 (Spring 2024)

STARBURST OPTIMIZER

Better implementation of the System R optimizer
that uses declarative rules.

Stage #1: Query Rewrite
→ Compute a SQL-block-level, relational calculus-like

representation of queries.

Stage #2: Plan Optimization
→ Execute a System R-style (bottoms-up) dynamic

programming phase once query rewrite has completed.

Example: Latest version of IBM DB2

28

GRAMMAR-LIKE FUNCTIONAL RULES FOR REPRESENTING
QUERY OPTIMIZATION ALTERNATIVES
SIGMOD 1988

Lohman

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://dl.acm.org/citation.cfm?id=50204
http://dl.acm.org/citation.cfm?id=50204
https://perspectives.mvdirona.com/2017/12/1187/
https://perspectives.mvdirona.com/2017/12/1187/

15-721 (Spring 2024)

STARBURST OPTIMIZER

Advantages:
→ Works well in practice with fast performance.

Disadvantages:
→ Difficult to assign priorities to transformations
→ Some transformations are difficult to assess without

computing multiple cost estimations.
→ Rules maintenance is a huge pain because they are written

in IBM's Query Graph Model (QGM) DSL.

29

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

UNIFIED SEARCH

Unify the notion of both logical→logical and
logical→physical transformations.
→ No need for separate stages because everything is

transformations.

This approach generates many transformations, so
it makes heavy use of memoization to reduce
redundant work.

30

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

VOLCANO OPTIMIZER

General purpose cost-based query optimizer, based
on equivalence rules on algebras.
→ Easily add new operations and equivalence rules.
→ Treats physical properties of data as first-class entities

during planning.
→ Top-down approach (backward chaining) using branch-

and-bound search.

Example: Academic prototypes

31

THE VOLCANO OPTIMIZER GENERATOR:
EXTENSIBILITY AND EFFICIENT SEARCH
ICDE 1993

Graefe

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://15721.courses.cs.cmu.edu/spring2017/papers/14-optimizer1/graefe-icde1993.pdf
http://15721.courses.cs.cmu.edu/spring2017/papers/14-optimizer1/graefe-icde1993.pdf

15-721 (Spring 2024)

TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

QUICKSORT(A1.ID)

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

QUICKSORT(A1.ID)

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

HASH_JOIN(A1⨝A2,A3)

QUICKSORT(A1.ID)

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TOP-DOWN OPTIMIZATION

32

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

HASH_JOIN(A1⨝A2,A3)

QUICKSORT(A1.ID)

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

VOLCANO OPTIMIZER

Advantages:
→ Use declarative rules to generate transformations.
→ Better extensibility with an efficient search engine. Reduce

redundant estimations using memoization.

Disadvantages:
→ All equivalence classes are completely expanded to generate

all possible logical operators before the optimization
search.

→ Not easy to modify predicates.

33

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES OPTIMIZER

Object-oriented implementation of the previous
Volcano query optimizer.
→ Top-down approach (backward chaining) using branch-

and-bound search.

Supports expression re-writing through a direct
mapping function rather than an exhaustive search.

34

THE CASCADES FRAMEWORK FOR
QUERY OPTIMIZATION
IEEE DATA ENGINEERING BULLETIN 1995

Graefe

EFFICIENCY IN THE COLUMBIA
DATABASE QUERY OPTIMIZER
PORTLAND STATE UNIVERSITY MS THESIS 1998

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer1/graefe-ieee1995.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer1/graefe-ieee1995.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/xu-columbia-thesis1998.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/xu-columbia-thesis1998.pdf

15-721 (Spring 2024)

CASCADES: KEY IDEAS

Optimization tasks as data structures.
→ Patterns to match + Transformation Rule to apply

Rules to place property enforcers.
→ Ensures the optimizer generates correct plans.

Ordering of moves by promise.
→ Dynamic task priorities to find optimal plan more quickly.

Predicates as logical/physical operators.
→ Use same pattern/rule engine for expressions.

35

EFFICIENCY IN THE COLUMBIA
DATABASE QUERY OPTIMIZER
PORTLAND STATE UNIVERSITY MS THESIS 1998

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/xu-columbia-thesis1998.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/xu-columbia-thesis1998.pdf

15-721 (Spring 2024)

CASCADES: EXPRESSIONS

An expression represents some operation in the
query with zero or more input expressions.
→ Optimizer needs to quickly determine whether two

expressions are equivalent.

Logical Expression: (A ⨝ B) ⨝ C

Physical Expression: (ASeq ⨝HJ BSeq) ⨝NL CIdx

36

SELECT * FROM A
 JOIN B ON A.id = B.id
 JOIN C ON C.id = A.id;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: GROUPS

A group is a set of logically equivalent logical and
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from selecting

the allowable physical operators for the corresponding
logical forms.

37

Output:
[ABC]

Properties:
None

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
 ⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
 ⋮

G
ro

u
p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: GROUPS

A group is a set of logically equivalent logical and
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from selecting

the allowable physical operators for the corresponding
logical forms.

37

Output:
[ABC]

Properties:
None

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
 ⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
 ⋮

Equivalent
Expressions

G
ro

u
p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MULTI-EXPRESSION

Instead of explicitly instantiating all possible
expressions in a group, the optimizer implicitly
represents redundant expressions in a group as a
multi-expression.
→ This reduces the number of transformations, storage

overhead, and repeated cost estimations.

38

Output:
[ABC]

Properties:
None

Logical Multi-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [A]⨝[BC]
 ⋮

Physical Multi-Exps
1. [AB]⨝SM[C]
2. [AB]⨝HJ[C]
3. [AB]⨝NL[C]
4. [BC]⨝SM[A]
 ⋮

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: RULES

A rule is a transformation of an expression to a
logically equivalent expression.
→ Transformation Rule: Logical to Logical
→ Implementation Rule: Logical to Physical

Each rule is represented as a pair of attributes:
→ Pattern: Defines the structure of the logical expression

that can be applied to the rule.
→ Substitute: Defines the structure of the result after

applying the rule.

39

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Pattern

CASCADES: RULES

40

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

Transformation Rule
Rotate Left-to-Right

Implementation Rule
EQJOIN→SORTMERGE

A⨝[BC]

GET(A)

GET(B) GET(C)

B⨝C

[AB]⨝SMC

A⨝SMB

GET(A) GET(B)

GET(C)

[AB]⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan
Group

Logical Expr

Physical Expr

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

Stores all previously explored alternatives in a
compact graph structure / hash table.

Equivalent operator trees and their corresponding
plans are stored together in groups.

Provides an overview of the optimizer's search
progress that is used in multiple ways:
→ Transformation Result Memorization
→ Duplicate Group Detection
→ Property + Cost Management.

41

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PRINCIPLE OF OPTIMALITY

Every sub-plan of an optimal plan is itself optimal.

This allows the optimizer to restrict the search
space to a smaller set of expressions.
→ The optimizer never has to consider a plan containing sub-

plan P1 that has a greater cost than equivalent plan P2 with
the same physical properties.

42

EXPLOITING UPPER AND LOWER BOUNDS IN
TOP-DOWN QUERY OPTIMIZATION
IDEAS 2001

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/shapiro-ideas2001.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/shapiro-ideas2001.pdf

15-721 (Spring 2024)

CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Cost: 10

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

Cost: 50+(10+20)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

[A]⨝HJ[B] 80

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Properties:
None

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

[A]⨝HJ[B] 80

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Properties:
None

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝HJ[B] 80

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Properties:
None

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝HJ[B] 80

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

43

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Properties:
None

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

Cost: 40+(80+5)

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝HJ[B] 80

([A]⨝HJ[B])⨝HJ[C] 125

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES IMPLEMENTATIONS

Standalone:
→ Wisconsin OPT++ (1990s)
→ Portland State Columbia (1990s)
→ Greenplum Orca (2010s)
→ Apache Calcite (2010s)

Integrated:
→ Microsoft SQL Server (1990s)
→ Tandem NonStop SQL (1990s)
→ CockroachDB (2010s)

44

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://pages.cs.wisc.edu/~navin/research/apg.html
http://web.cecs.pdx.edu/~len/Columbia/
https://github.com/greenplum-db/gporca
https://calcite.apache.org/
http://www.vldb.org/conf/1996/P592.PDF

15-721 (Spring 2024)

RANDOMIZED ALGORITHMS

Perform a random walk over a solution space of all
possible (valid) plans for a query.

Continue searching until a cost threshold is reached
or the optimizer runs for a length of time.

Examples: Postgres’ genetic algorithm.

45

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SIMULATED ANNEALING

Start with a query plan that is generated using the
heuristic-only approach.

Compute random permutations of operators (e.g.,
swap the join order of two tables):
→ Always accept a change that reduces cost.
→ Only accept a change that increases cost with some

probability.
→ Reject any change that violates correctness (e.g., sort

ordering).

46

QUERY OPTIMIZATION BY SIMULATED ANNEALING
SIGMOD 1987

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://dl.acm.org/citation.cfm?id=38722
http://dl.acm.org/citation.cfm?id=38722

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

More complicated queries use a genetic algorithm
that selects join orderings (GEQO).

At the beginning of each round, generate different
variants of the query plan.

Select the plans that have the lowest cost and
permute them with other plans. Repeat.
→ The mutator function only generates valid plans.

47

Source: Postgres Documentation

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://www.postgresql.org/docs/9.4/static/geqo-pg-intro.html

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

48

1st Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

48

Best:100
1st Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

48

Best:100
1st Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

48

Best:100
1st Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

48

Best:100
1st Generation 2nd Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

48

Best:100
1st Generation 2nd Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

48

1st Generation 2nd Generation
Best:80

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

48

1st Generation 2nd Generation
Best:80

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

48

1st Generation 2nd Generation 3rd Generation

…

Best:80

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

R S

T

HJ

HJ

R S

T

HJ

HJ

R T

S

HJ

HJ

Cost:
90

Cost:
160

Cost:
120

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

RANDOMIZED ALGORITHMS

Advantages:
→ Jumping around the search space randomly allows the

optimizer to get out of local minimums.
→ Low memory overhead (if no history is kept).

Disadvantages:
→ Difficult to determine why the DBMS may have chosen a

plan.
→ Must do extra work to ensure that query plans are

deterministic.
→ Still must implement correctness rules.

49

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

RANDOMIZED ALGORITHMS

Advantages:
→ Jumping around the search space randomly allows the

optimizer to get out of local minimums.
→ Low memory overhead (if no history is kept).

Disadvantages:
→ Difficult to determine why the DBMS may have chosen a

plan.
→ Must do extra work to ensure that query plans are

deterministic.
→ Still must implement correctness rules.

49

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/XA3SBgcZwtE?t=637

15-721 (Spring 2024)

PARTING THOUGHTS

Query optimization is hard.

This difficulty is why NoSQL systems didn’t
implement optimizers (at first).

Playlist of CMU-DB Query Optimizer talks:
→ https://cmudb.io/youtube-optimizers

50

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://cmudb.io/youtube-optimizers

15-721 (Spring 2024)

PARTING THOUGHTS

Query optimization is hard.

This difficulty is why NoSQL systems didn’t
implement optimizers (at first).

Playlist of CMU-DB Query Optimizer talks:
→ https://cmudb.io/youtube-optimizers

50

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://cmudb.io/youtube-optimizers
https://youtu.be/pQe1LQJiXN0

15-721 (Spring 2024)

NEXT CLASS

German-style Unnesting Sub-Queries

German-style Dynamic Programming

51

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

	Introduction
	Slide 1: Query Optimizer Implementation Part 1
	Slide 2: LAST CLASS
	Slide 3: NEXT TWO WEEKS
	Slide 4: QUERY OPTIMIZATION
	Slide 5: LOGICAL VS. PHYSICAL PLANS
	Slide 6: COST ESTIMATION
	Slide 7: TODAY’S AGENDA

	Heuristics
	Slide 8: HEURISTIC-BASED OPTIMIZATION
	Slide 9: LOGICAL QUERY OPTIMIZATION
	Slide 10: SPLIT CONJUNCTIVE PREDICATES
	Slide 11: SPLIT CONJUNCTIVE PREDICATES
	Slide 12: PREDICATE PUSHDOWN
	Slide 13: PREDICATE PUSHDOWN
	Slide 14: REPLACE CARTESIAN PRODUCTS
	Slide 15: REPLACE CARTESIAN PRODUCTS
	Slide 16: PROJECTION PUSHDOWN
	Slide 17: PROJECTION PUSHDOWN
	Slide 18: INGRES OPTIMIZER
	Slide 19: INGRES OPTIMIZER
	Slide 20: INGRES OPTIMIZER
	Slide 21: INGRES OPTIMIZER
	Slide 22: INGRES OPTIMIZER
	Slide 23: INGRES OPTIMIZER
	Slide 24: INGRES OPTIMIZER
	Slide 25: INGRES OPTIMIZER
	Slide 26: HEURISTIC-BASED OPTIMIZATION
	Slide 27: HEURISTIC-BASED OPTIMIZATION

	Heuristics + Cost
	Slide 28: HEURISTICS + COST-BASED SEARCH
	Slide 29: PHYSICAL QUERY OPTIMIZATION
	Slide 30: PLAN ENUMERATION
	Slide 31: SYSTEM R OPTIMIZER
	Slide 32: SYSTEM R OPTIMIZER
	Slide 33: SYSTEM R OPTIMIZER
	Slide 34: SYSTEM R OPTIMIZER
	Slide 35: SYSTEM R OPTIMIZER
	Slide 36: SYSTEM R OPTIMIZER
	Slide 37: SYSTEM R OPTIMIZER
	Slide 38: SYSTEM R OPTIMIZER
	Slide 39: SYSTEM R OPTIMIZER
	Slide 40: SYSTEM R OPTIMIZER
	Slide 41: SEARCH TERMINATION
	Slide 42: HEURISTICS + COST-BASED SEARCH

	Optimizer Generators
	Slide 43: OBSERVATION
	Slide 44: OPTIMIZER GENERATORS
	Slide 45: OPTIMIZER GENERATORS

	Stratified Search
	Slide 46: STRATIFIED SEARCH
	Slide 47: STARBURST OPTIMIZER
	Slide 48: STARBURST OPTIMIZER
	Slide 49: STARBURST OPTIMIZER
	Slide 50: STARBURST OPTIMIZER

	Unified Search
	Slide 51: UNIFIED SEARCH
	Slide 52: VOLCANO OPTIMIZER
	Slide 53: TOP-DOWN OPTIMIZATION
	Slide 54: TOP-DOWN OPTIMIZATION
	Slide 55: TOP-DOWN OPTIMIZATION
	Slide 56: TOP-DOWN OPTIMIZATION
	Slide 57: TOP-DOWN OPTIMIZATION
	Slide 58: TOP-DOWN OPTIMIZATION
	Slide 59: TOP-DOWN OPTIMIZATION
	Slide 60: TOP-DOWN OPTIMIZATION
	Slide 61: TOP-DOWN OPTIMIZATION
	Slide 62: TOP-DOWN OPTIMIZATION
	Slide 63: TOP-DOWN OPTIMIZATION
	Slide 64: TOP-DOWN OPTIMIZATION
	Slide 65: TOP-DOWN OPTIMIZATION
	Slide 66: TOP-DOWN OPTIMIZATION
	Slide 67: VOLCANO OPTIMIZER

	Cascades
	Slide 68: CASCADES OPTIMIZER
	Slide 69: CASCADES: KEY IDEAS
	Slide 70: CASCADES: EXPRESSIONS
	Slide 71: CASCADES: GROUPS
	Slide 72: CASCADES: GROUPS
	Slide 73: CASCADES: MULTI-EXPRESSION
	Slide 74: CASCADES: RULES
	Slide 75: CASCADES: RULES
	Slide 76: CASCADES: MEMO TABLE
	Slide 77: PRINCIPLE OF OPTIMALITY
	Slide 78: CASCADES: MEMO TABLE
	Slide 79: CASCADES: MEMO TABLE
	Slide 80: CASCADES: MEMO TABLE
	Slide 81: CASCADES: MEMO TABLE
	Slide 82: CASCADES: MEMO TABLE
	Slide 83: CASCADES: MEMO TABLE
	Slide 84: CASCADES: MEMO TABLE
	Slide 85: CASCADES: MEMO TABLE
	Slide 86: CASCADES: MEMO TABLE
	Slide 87: CASCADES: MEMO TABLE
	Slide 88: CASCADES: MEMO TABLE
	Slide 89: CASCADES: MEMO TABLE
	Slide 90: CASCADES: MEMO TABLE
	Slide 91: CASCADES: MEMO TABLE
	Slide 92: CASCADES IMPLEMENTATIONS

	Randomized
	Slide 93: RANDOMIZED ALGORITHMS
	Slide 94: SIMULATED ANNEALING
	Slide 95: POSTGRES GENETIC OPTIMIZER
	Slide 96: POSTGRES GENETIC OPTIMIZER
	Slide 97: POSTGRES GENETIC OPTIMIZER
	Slide 98: POSTGRES GENETIC OPTIMIZER
	Slide 99: POSTGRES GENETIC OPTIMIZER
	Slide 100: POSTGRES GENETIC OPTIMIZER
	Slide 101: POSTGRES GENETIC OPTIMIZER
	Slide 102: POSTGRES GENETIC OPTIMIZER
	Slide 103: POSTGRES GENETIC OPTIMIZER
	Slide 104: POSTGRES GENETIC OPTIMIZER
	Slide 105: RANDOMIZED ALGORITHMS
	Slide 106: RANDOMIZED ALGORITHMS

	Conclusion
	Slide 107: PARTING THOUGHTS
	Slide 108: PARTING THOUGHTS
	Slide 109: NEXT CLASS

