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LAST CLASS

Row-oriented database network protocols via
JDBC/ODBC APIs are sufficient for queries that
access a small number of tuples.

Large output queries / bulk export operations
benefit from Arrow native columnar optimizations

via ADBC.
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NEXT TWO WEEKS

Optimizer Implementations
Query Rewriting

Plan Enumerations

Cost Models
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QUERY OPTIMIZATION

For a given query, find a correct physical execution
plan for that query with the lowest "cost".

This is the part of a DBMS that is the hardest to
implement well (proven to be NP-Complete).

No optimizer truly produces the "optimal” plan
— Use estimation techniques to guess real plan cost.
— Use heuristics to limit the search space.
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LOGICAL VS. PHYSICAL PLANS

The optimizer generates a mapping of a logical
algebra expression to the optimal equivalent
physical algebra expression.

Physical operators define a specific execution

strategy using an access path.

— They can depend on the physical format of the data that
they process (i.e., sorting, compression).

— Not always a 1:1 mapping from logical to physical.
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COST ESTIMATION

Generate an estimate of the cost of executing a plan

for the current state of the database.
— Interactions with other work in DBMS
— Size of intermediate results

— Choices of algorithms, access methods

— Resource utilization (CPU, I/O, network)
— Data properties (skew, order, placement)

W e will discuss this more next week...
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TODAY’S AGENDA

Heuristics
Heuristics + Cost-based Search
Stratified Search

Unified Search
Randomized Search
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HEURISTIC-BASED OPTIMIZATION

Define static rules that transform logical operators

to a physical plan without a cost model.

— Perform most restrictive selection early

— Perform all selections before joins

— Predicate/Limit/Projection pushdowns

— Join ordering based on simple rules or cardinality estimates

Examples: INGRES (until mid-1980s) and Oracle
(until mid-1990s), MongoDB, most new DBMSs.

UERY PROCESSING IN A RELATIONAL DATABASE
ANAGEMENT SYSTEM
VLDB 1979
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LOGICAL QUERY OPTIMIZATION

Split Conjunctive Predicates

Predicate Pushdown

Replace Cartesian Products with Joins
Projection Pushdown

Source: Thomas Neumann
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SPLIT CONJUNCTIVE PREDICATES

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM n ARTIST. NAME
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID l
AND ALBUM.NAME="Andy's OG Remix"

ARTIST.ID=APPEARS.ARTIST_ID AND
G APPEARS . ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Andy's OG Remix"

Decompose predicates

into their simplest forms l
to make it easier for the X
optimizer to move them P
around. X
ARTIST APPEARS ALBUM
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SPLIT CONJUNCTIVE PREDICATES

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM n ARTIST. NAME

WHERE ARTIST.ID=APPEARS.ARTIST_ID 1
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

ARTIST.ID=APPEARS.ARTIST_ID

APPEARS . ALBUM_ID=ALBUM. ID

Decompose predicates
into their simplest forms

QQQ

ALBUM.NAME="Andy's 0OG Remix"

to make it easier for the X
optimizer to move them P
around. X
ARTIST APPEARS ALBUM
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PREDICATE PUSHDOWN

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM n ARTIST. NAME

WHERE ARTIST.ID=APPEARS.ARTIST_ID 1
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

ARTIST.ID=APPEARS.ARTIST_ID

APPEARS . ALBUM_ID=ALBUM. ID

Move the predicate to
the lowest point in the
plan after Cartesian X

products. )(/-/'
PN

ARTIST APPEARS ALBUM

QQQ

ALBUM.NAME="Andy's 0OG Remix"
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PREDICATE PUSHDOWN

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Move the predicate to
the lowest point in the
plan after Cartesian
products.
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G ARTIST.ID=APPEARS.ARTIST_ID

X
NG

ARTIST

o)

’ l ARTIST.NAME

APPEARS . ALBUM_ID=ALBUM. ID

t
X

/G ALBUM.NAME="Andy's OG Remix"

APPEARS ALBUM
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REPLACE CARTESIAN PRODUCTS

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME="Andy's OG Remix"

Replace all Cartesian
Products with inner
joins using the join
predicates.
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G ARTIST.ID=APPEARS.ARTIST_ID

X
NG

ARTIST

’ l ARTIST.NAME

G APPEARS . ALBUM_ID=ALBUM. ID

t
X

/G ALBUM.NAME="Andy's OG Remix"

APPEARS ALBUM
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REPLACE CARTESIAN PRODUCTS

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME="Andy's OG Remix"

Replace all Cartesian
Products with inner
joins using the join
predicates.
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’ l ARTIST.NAME

APPEARS ALBUM_ID=ALBUM.ID

/ ALBUM NAME= Andy s 0G Remix"

ARTIST ID=APPEARS.ARTIST_ID

PN

ARTIST APPEARS ALBUM
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PROJECTION PUSHDOWN

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Eliminate redundant
attributes before pipeline
breakers to reduce
materialization cost.
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PN

ARTIST

’ l ARTIST.NAME

APPEARS ALBUM_ID=ALBUM.ID

/ ALBUM NAME= Andy s 0G Remix"

ARTIST ID=APPEARS.ARTIST_ID

APPEARS ALBUM
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PROJECTION PUSHDOWN

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Eliminate redundant
attributes before pipeline
breakers to reduce
materialization cost.
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ARTIST.NAME,
APPEARS . ALBUM_ID

ARTIST.ID=
APPEARS.ARTIST_ID

‘" ID,NAME

ARTIST

TC

’ l ARTIST.NAME

I

N APPEARS . ALBUM_ID=ALBUM. ID

TC =

\

GALBUM.NAME="Andy's 0G Remix"

ARTIST_ID,
ALBUM_ID

APPEARS ALBUM
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INGRES OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"
ORDER BY ARTIST.ID

Step #1: Decompose into single-value queries

$CMU-DB
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Query #1

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
FROM ALBUM
WHERE ALBUM.NAME="Andy's OG Remix"

Query #2

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, TEMPT
WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
ORDER BY APPEARS.ID
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INGRES OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"
ORDER BY ARTIST.ID

Step #1: Decompose into single-value queries
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Query #1

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
FROM ALBUM
WHERE ALBUM.NAME="Andy's OG Remix"

Query #2

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, TEMPT
WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
ORDER BY APPEARS.ID
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INGRES OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id. Query #1

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
FROM ALBUM
WHERE ALBUM.NAME="Andy's OG Remix"

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALB[:M_ID?ALBUM.ID' ) Query #3
AND ALBUM.NAME="Andy's OG Remix
ORDER BY ARTIST.ID SELECT APPEARS.ARTIST_ID INTO TEMP2
FROM APPEARS, TEMP1

Step #1: Decompose into single-value queries WHERE APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
ORDER BY APPEARS.ARTIST_ID

Query #4
SELECT ARTIST.NAME

FROM ARTIST, TEMP2
WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

$CMU-DB
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INGRES OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME ALBUM_ID
FROM ARTIST, APPEARS, ALBUM 9999

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID Query #3
AND ALBUM.NAME="Andy's 0G Remix"
ORDER BY ARTIST.ID SELECT APPEARS.ARTIST_ID INTO TEMP2
FROM APPEARS, TEMPT
Step #1: Decompose into single-value queries L3S A S AU SN Sl T
ORDER BY APPEARS.ARTIST_ID
Step #2: Substitute the values from Query #4
Query#1 - Query #3 - Query #4
SELECT ARTIST.NAME
FROM ARTIST, TEMP2
WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

$CMU-DB
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INGRES OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME ALBUM_ID
FROM ARTIST, APPEARS, ALBUM 9999
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME="Andy's OG Remix"
ORDER BY ARTIST.ID SELECT APPEARS.ARTIST_ID

FROM APPEARS
WHERE APPEARS.ALBUM_ID=9999
ORDER BY APPEARS.ARTIST_ID

Step #1: Decompose into single-value queries

Step #2: Substitute the values from
Query#1 - Query #3 - Query #4 Query #4

SELECT ARTIST.NAME
FROM ARTIST, TEMP2
WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID
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INGRES OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"
ORDER BY ARTIST.ID

Step #1: Decompose into single-value queries

Step #2: Substitute the values from
Query#1 - Query #3 - Query #4

$CMU-DB
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ALBUM_ID
9999

ARTIST_ID

123
456

Query #4

SELECT ARTIST.NAME
FROM ARTIST, TEMP2

WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID
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INGRES OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"
ORDER BY ARTIST.ID

Step #1: Decompose into single-value queries

Step #2: Substitute the values from
Query#1 - Query #3 - Query #4
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ALBUM_ID
9999

ARTIST_ID

123
456 l\\

SELECT ARTIST.NAME
FROM ARTIST
WHERE ARTIST.ARTIST_ID=123

A

SELECT ARTIST.NAME
FROM ARTIST
WHERE ARTIST.ARTIST_ID=456

/
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INGRES OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME ALBUM_ID
FROM ARTIST, APPEARS, ALBUM » 9999
WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME="Andy's 0G Remix"
ORDER BY ARTIST.ID ARTIST_ID
123
Step #1: Decompose into single-value queries 456
Step #2: Substitute the values from
Query#1 - Query #3 - Query #4 0.D.B.

‘ DJ Premier \
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HEURISTIC-BASED OPTIMIZATION

Advantages:

— Easy to implement and debug.
— Works reasonably well and is fast for simple queries.

Disadvantages:
— Relies on magic constants that predict the efficacy of a

planning decision.
— Nearly impossible to generate good plans when operators
have complex inter-dependencies.
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HEURISTIC-BASED C

Advantages:
— Easy to implement and debug.

— Works reasonably well and is fast

Disadvantages:

— Relies on magic constants that pre

planning decision.

— Nearly impossible to generate gog
have complex inter-dependencies

PTIMIZATION

Stonebraker gave the story of the query optimizer as an exam-
ple. Relational queries were often highly complex. Let's say you
wanted your database to give you the name, salary, and job title of
everyone in your Chicago office who did the same kind of work as
an employee named Alien. (This example happens to come from Or-
acle's 1981 user guide.) This would require the database to find infor-
mation in the employee table and the department table, then sort the
data. How quickly the database management system did this de-
pended on how cleverly the system was constructed. "If you do it
smart, you get the answer a lot quicker than if you do it stupid,
Stonebraker said.

He continued. "Oracle had a really stupid optimizer. They did
the query in the order that you happened to type in the clauses. Basi-
cally, they blindly did it from left to right. The Ingres program
looked at everything there and tried to figure out the best way to do
it." But Ellison found a way to neutralize this advantage, Stone-
braker said. "Oracle was really shrewd. They said they had a syntac-
tic optimizer, whereas the other guys had a semantic optimizer. The
truth was, they had no optimizer and the other guys had an opti-
mizer. It was very, very, very creative marketing. . . . They were very

good at confusing the market."

"What he's using is semantics himself," Ellison said. Just be-
cause Oracle did things differently, "Stonebraker decided we
didn't have an optimizer. [He seemed to think] the only kind of
optimizer was his optimizer, and our approach to optimization
wasn't really optimization at all. That's an interesting notion, but
I'm not sure I buy that."
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HEURISTICS + COST-BASED SEARCH

First use static rules to perform initial
logical—logical optimizations.

Then enumerate plans using physical—logical
transformations to find best plan according to a cost
model.

Selinger

Examples: System R, early IBM DB2, most open-
source DBMS:s.

ACCESS PATH SELECTION IN A RELATIONAL DATABASE
MANAGEMENT SYSTEM
=| SIGMOD 1979
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PHYSICAL QUERY OPTIMIZATION

Transform a query plan's logical operators into

physical operators.

— Add more execution information

— Select indexes / access paths

— Choose operator implementations

— Choose when to materialize (i.e., temp tables).

This stage must support cost model estimates.

$2CMU-DB
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PLAN ENUMERATION

Approach #1: Generative / Bottom-Up

— Start with nothing and then iteratively assemble and add
building blocks to generate a query plan.

— Examples: System R, Starburst

Approach #2: Transformation / Top-Down

— Start with the outcome that the query wants, and then
transform it to equivalent alternative sub-plans to find the
optimal plan that gets to that goal.

— Examples: Volcano, Cascades

=== 0ON THE CORRECT AND COMPLETE ENUMERATION
OF THE CORE SEARCH SPACE

SIGMOD 2013
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SYSTEM R OPTIMIZER

Break query up into blocks and generate the logical
operators for each block.

For each logical operator, generate a set of physical

operators that implement it.
— All combinations of join algorithms and access paths

Then iteratively construct a "left-deep” join tree
that minimizes the estimated amount of work to
execute the plan.

$2CMU-DB
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SYSTEM R OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"
ORDER BY ARTIST.ID

Step #1: Choose the best access paths to
each table

$2CMU-DB
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ARTIST: Sequential Scan
APPEARS : Sequential Scan
ALBUM: Index Look-up on NAME



https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

SYSTEM R OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"
ORDER BY ARTIST.ID

Step #1: Choose the best access paths to

each table

Step #2: Enumerate all possible join
orderings for tables

$2CMU-DB
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ARTIST: Sequential Scan
APPEARS : Sequential Scan
ALBUM: Index Look-up on NAME

ARTIST P APPEARS D ALBUM
APPEARS D] ALBUM D] ARTIST
ALBUM D] APPEARS D] ARTIST
APPEARS DX ARTIST P ALBUM
ARTIST x ALBUM P APPEARS
ALBUM  x ARTIST P APPEARS
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SYSTEM R OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"
ORDER BY ARTIST.ID

Step #1: Choose the best access paths to

each table

Step #2: Enumerate all possible join
orderings for tables

Step #3: Determine the join ordering

with the lowest cost

$2CMU-DB
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ARTIST: Sequential Scan
APPEARS : Sequential Scan
ALBUM: Index Look-up on NAME

ARTIST P APPEARS D ALBUM
APPEARS D] ALBUM D] ARTIST
ALBUM D] APPEARS D] ARTIST
APPEARS DX ARTIST P ALBUM
ARTIST x ALBUM P APPEARS
ALBUM  x ARTIST P APPEARS
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Logical Op

B Physical Op SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSPJALBUM olele
ALBUM ARTIST ARTIST

HASH_JOIN(A1,A3)

MERGE_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A2,A3) HASH_JOIN(A3,A2)

ALBUM. ID=APPEARS . ALBUM_ID

ARTIST. ID=APPEARS . ARTIST_ID \ APPEARS . ALBUM_ID=ALBUM. ID

MERGE_JOIN(A3,A2) FX X

ARTIST ALBUM APPEARS

$CMU-DB
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[ ] Logical Op

B Physical Op SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSP<IALBUM
ALBUM ARTIST ARTIST

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) FX X

ARTIST.ID=APPEARS.ARTIST_ID \ / APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS

$CMU-DB
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Logical Op

B Physical Op SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

_— N~

HASH_JOIN(A11<IA3,A2) |MERGE_JOIN(A11A3,A2) |HASH_JOIN(A21<IA3, A1)

APPEARS . ALBUM_ID=ALBUM. ID APPEARS . ARTIST_ID=ARTIST.ID APPEARS . ARTIST_ID=ARTIST.ID

MERGE_JOIN(A2P<IA3,A1) JHASH_JOIN(CA3P<IA2,A1)|MERGE_JOIN(A3<A2,A1) KAl

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSPJALBUM
ALBUM ARTIST ARTIST

HASH_JOIN(A1,A3)

HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) FX X

ARTIST.ID=APPEARS.ARTIST_ID \ / APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS

$CMU-DB
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Logical Op

B Physical Op SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

/

HASH_JOIN(A1I<IA3,A2)

HASH_JOIN(A21<IA3,A1)

HASH_JOIN(A3P<A2,A1) 00

APPEARS . ALBUM_ID=ALBUM. ID APPEARS . ARTIST_ID=ARTIST.ID APPEARS . ARTIST_ID=ARTIST.ID

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSPJALBUM
ALBUM ARTIST ARTIST

HASH_JOIN(A1,A3)

HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) FX X

ARTIST.ID=APPEARS.ARTIST_ID \ / APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS
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[ ] Logical Op

B Physical Op SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

HASH_JOIN(A21<IA3,A1)

APPEARS . ARTIST_ID=ARTIST.ID

ALBUMPIAPPEARS
ARTIST

HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

ARTIST ALBUM APPEARS

$CMU-DB

15-721 (Spring 2024)


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

[ ] Logical Op
B Physical Op

$CMU-DB
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SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

The query has ORDER BY on
HASH_JOIN(A2<IA3,A1) ARTIST.ID but the logical plans
do not contain sorting properties.

APPEARS . ARTIST_ID=ARTIST.ID

ALBUMPIAPPEARS
ARTIST

Hack: Keep track of best plans with and
without data in proper physical form,
and then check whether tacking on a sort
operator at the end is better.

HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

ARTIST ALBUM APPEARS
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SEARCH TERMINATION

Approach #1: Wall-clock Time

— Stop after the optimizer runs for some length of time.

Approach #2: Cost Threshold

— Stop when the optimizer finds a plan that has a lower cost
than some threshold.

Approach #3: Exhaustion

— Stop when there are no more enumerations of the target
plan. Usually done per sub-plan/group.

Approach #4: Transformation Count

— Stop after a certain number of transformations have been
considered.
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HEURISTICS + COST-BASED SEARCH

Advantages:

— Usually finds a reasonable plan without having to perform
an exhaustive search.

Disadvantages:

— All the same problems as the heuristic-only approach.

— Left-deep join trees are not always optimal.

— Must take in consideration the physical properties of data
in the cost model (e.g., sort order).

$2CMU-DB

15-721 (Spring 2024)
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OBSERVATION

Writing query transformation rules in a procedural

language is hard and error-prone.

— No easy way to verify that the rules are correct without
running a lot of fuzz tests.

— Generation of physical operators per logical operator is
decoupled from deeper semantics about query.

A better approach is to use a declarative DSL to
write the transformation rules and then have the
optimizer enforce them during planning.
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OPTIMIZER GENERATORS

Framework to allow a DBMS implementer to write

the declarative rules for optimizing queries.

— Separate the search strategy from the data model.

— Separate the transformation rules and logical operators
from physical rules and physical operators.

The implementation of the optimizer's pattern
matching method and transformation rules can be
independent of its search strategy.

$2CMU-DB

15-721 (Spring 2024)
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OPTIMIZER GENERATORS

Choice #1: Stratified Search

— Planning is done in multiple stages (heuristics then cost-
based search).

— Examples: Starburst, CockroachDB

Choice #2: Unified Search

— Perform query planning all at once.
— Examples: Cascades, OPT++, SQL Server

$2CMU-DB

15-721 (Spring 2024)
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STRATIFIED SEARCH

First rewrite the logical query plan using

transformation rules.

— The engine checks whether the transformation is allowed
before it can be applied.

— Cost is never considered in this step.

Then perform a cost-based search to map the logical
plan to a physical plan.

$2CMU-DB

15-721 (Spring 2024)


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

STARBURST OPTIMIZER

Better implementation of the System R optimizer
that uses declarative rules.
Stage #1: Query Rewrite

— Compute a SQL-block-level, relational calculus-like
representation of queries.

Lohman

Stage #2: Plan Optimization
— Execute a System R-style (bottoms-up) dynamic
programming phase once query rewrite has completed.

Example: Latest version of IBM DB2

| GRAMMAR-LIKE FUNCTIONAL RULES FOR REPRESENTING
UERY OPTIMIZATION ALTERNATIVES
SIGMOD 1988

$CMU-DB
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STARBURST

Better implementation of t|
that uses declarative rules.

Stage #1: Query Rewrite
— Compute a SQL-block-level,
representation of queries.

Stage #2: Plan Optimizat;
— Execute a System R-style (bg
programming phase once qu

Example: Latest version ¢

S AMMAR-LIKE FUNCTIONAL RULES FOR REPRESENTING
GIl?JERY OPTIMIZATION ALTERNATIVES
SIGMOD 1988

Perspectives

Four DB2 Code Bases?

Many years ago | worked on IBM DB2 and so | occasionally get the question, "how the
heck could you folks possibly have four relational database management system code
bases?” Some go on to argue that a single code base would have been much more
efficient. That's certainly true. And, had we moved to a single code base, that
engineering resource efficiency improvement would have led to a very different
outcome in the database wars. I'm skeptical on this extension of the argument but the
question is an interesting one and | wrote up a more detailed answer than usually
possible off the cuff.

IBM Relational Database Code Bases

Few server manufacturers have the inclination and the resources needed to develop a
relational database management system and yet IBM has internally developed and
continues to support four independent, full-featured relational database products. A
production-quality RDBMS with a large customer base is typically well over a million
lines of code and represents a multi-year effort of hundreds and, in some cases,
thousands of engineers. These are massive undertakings requiring special skills, so the
question sometimes comes up, how could [BM possibly end up with four different
RDBMS systems that don't share components?

At least while I was at IBM, there was frequent talk of developing a single RDBMS code
base for all supported hardware and operating systems. The reasons why this didn’t
happen are at least partly social and historical, but there are also many strong technical
challenges that make it difficult rewind the clock and use a single code base. The
diversity of the IBM hardware and operating platforms would have made it difficult, the
deep exploitation of unique underlying platform characteristics like the single level
store on the AS/400 or the Sysplex Data Sharing on System z would make it truly
challenging, the implementation languages used by many of the RDBMS code bases

$CMU-DB

15-721 (Spring 2024)
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STARBURST |Perspectives

Better implementation of t|
that uses declarative rules.

Stage #1: Query Rewrite

Four DB2 Code Bases?

— Compute a SQL-block-level,|  rossieofrtne cur

Many years ago | worked on IBM DB2 and so | occasionally get the question, "how the
heck could you folks possibly have four relational database management system code
bases?” Some go on to argue that a single code base would have been much more
efficient. That's certainly true. And, had we moved to a single code base, that
engineering resource efficiency improvement would have led to a very different
outcome in the database wars. I'm skeptical on this extension of the argument but the
question is an interesting one and | wrote up a more detailed answer than usually

representa

Stage #2: Pl

— Execute a §
programm

Example: I

— | GRAMMAR-LIKE FUNCTIONAL RULES FOR R

There was a lot to be done and very little time. The pressure was mounting and we were
looking at other solutions from a variety of different sources when the IBM Almaden
database research team jumped in. They offered to put the entire Alimaden database
research team on the project, with a goal to both replace the OS/2 DBM optimizer and
execution engine with Starburst (Database research project) components and to help
solve the scaling and stability problems we were currently experiencing in the field.
Taking a research code base is a dangerous step for any development team, but this
proposal was different in that the authors would accompany the code base. Pat Selinger
of IBM Almaden Research essentially convinced us that we would have a world-class
optimizer and execution engine and we would have the full-time commitment from Pat,
Bruce Lindsay, Guy Lohman, C. Mohan, Hamid Pirahesh, John McPherson and the rest
of the IBM Almaden database research team working shoulder to shoulder with us in
making this product successful.

Bases

to develop a
oped and
broducts. A
I a million
cases,

skills, so the
different

RDBMS code
this didn’t
ong technical
e. The

it difficult, the

UERY OPTIMIZATION ALTERNATIVES
SIGMOD 1988
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UEEPEXPIOTEton Of Unique Underlying platiorm characteristics like the single level
store on the AS/400 or the Sysplex Data Sharing on System z would make it truly
challenging, the implementation languages used by many of the RDBMS code bases
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STARBURST OPTIMIZER

Advantages:
— Works well in practice with fast performance.

Disadvantages:

— Difficult to assign priorities to transformations
— Some transformations are difficult to assess without
computing multiple cost estimations.

— Rules maintenance is a huge pain because they are written
in IBM's Query Graph Model (QGM) DSL.
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UNIFIED SEARCH

Unify the notion of both logical-logical and

logical>physical transformations.
— No need for separate stages because everything is
transformations.

This approach generates many transformations, so
it makes heavy use of memoization to reduce
redundant work.

$2CMU-DB
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VOLCANO OPTIMIZER

General purpose cost-based query optimizer, based

on equivalence rules on algebras.

— Easily add new operations and equivalence rules.

— Treats physical properties of data as first-class entities
during planning. Gre it

— Top-down approach (backward chaining) using branch-
and-bound search.

Example: Academic prototypes

72| THE VOLCANO OPTIMIZER GENERATOR:
= %(D-I—E{\IQ%EILITY AND EFFICIENT SEARCH

$2CMU-DB
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what
we want the query to be.

£=CMU-DB

15-721 (Spring 2024 )

ARTIST P APPEARS DX ALBUM
ORDER-BY (ARTIST.ID)
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what ARTEST o< APPEARS >t ALY
we want the query to be. .

Invoke rules to create new nodes
and traverse tree.
— Logical—Logical:
JOIN(CA,B) to JOIN(B,A)
— Logical-Physical:

JOIN (A ! B) to HASH_JOIN (A , B) ARTISTPAPPEARS ALBUMPAPPEARS ARTISTPALBUM

ARTIST ALBUM APPEARS
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what » ARTEST o< APPEARS >t ALY
we want the query to be. .

Invoke rules to create new nodes

and traverse tree.

RN Logical—>L0gicalt MERGE_JOIN(A1P<IA2,A3)
JOIN(CA,B) to JOIN(B,A)

— Logical-Physical:

JOIN (A ! B) to HASH_JOIN (A , B) ARTISTPAPPEARS ALBUMPAPPEARS ARTISTPALBUM

ARTIST ALBUM APPEARS

$2CMU-DB
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what ARTEST o< APPEARS >t ALY
we want the query to be. .

Invoke rules to create new nodes
and traverse tree.

— Logical—>Logical; MERGE_JOIN(A1P<A2,A3)
JOIN(A,B) to JOIN(B,A) /

— Logical-Physical:
JOIN(A B) to HASH J’OIN(A B) ARTISTP<IAPPEARS ALBUMP<APPEARS ARTISTP<ALBUM

ARTIST ALBUM APPEARS
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what ARTEST o< APPEARS >t ALY
we want the query to be. :

Invoke rules to create new nodes
and traverse tree.

- Logical—>Logical: MERGE_JOIN(A1P<A2,A3)
JOINCA,B) to JOIN(B,A) /
— Logical-Physical:
JOIN(A B) to HASH J-OIN(A B) »‘ ARTISTP<IAPPEARS ALBUMPIAPPEARS ARTISTI<IALBUM
ARTIST ALBUM APPEARS

$CMU-DB
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what ARTEST o< APPEARS >t ALY
we want the query to be. :

Invoke rules to create new nodes
and traverse tree.

— Logical—>Logical; MERGE_JOIN(A1P<A2,A3)
JOIN(A,B) to JOIN(B,A) /

— Logical-Physical:
JOIN(A B) to HASH J’OIN(A B) ARTISTP<IAPPEARS ALBUMP<APPEARS ARTISTP<ALBUM

» HASH_JOIN(A1,A2)
—

ARTIST ALBUM APPEARS

$CMU-DB

15-721 (Spring 2024)


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what ARTEST o< APPEARS >t ALY
we want the query to be. :

Invoke rules to create new nodes
and traverse tree.

L Logical—>Logical: MERGE_JOIN(A1PA2,A3)
JOINCA,B) to JOIN(B, A) /
— Logical-Physical:
JOIN(A B) to HASH JOIN(A B) »‘ ARTISTP<IAPPEARS ALBUMP<IAPPEARS ARTISTP<ALBUM
HASH_JOIN(A1,A2) : 0
S
ARTIST ALBUM APPEARS

$CMU-DB
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what ARTEST o< APPEARS >t ALY
we want the query to be. :

Invoke rules to create new nodes
and traverse tree.

L Logical—>Logical: MERGE_JOIN(A1PA2,A3)
JOINCA,B) to JOIN(B, A) /
— Logical-Physical:
JOIN(A B) to HASH JOIN(A B) ARTISTP<IAPPEARS ALBUMP<IAPPEARS ARTISTP<ALBUM
HASH_JOIN(A1,A2) : DIN(AL, A
e \
ARTIST ALBUM APPEARS

$CMU-DB
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what » ARTIST bd APPEARS >d ALBUM

ORDER-BY (ARTIST.ID)

we want the query to be.
Invoke rules to create new nodes

and traverse tree.

_ Logical—>Logical: MERGE_JOIN(A1P<IA2,A3)
JOINCA,B) to JOIN(B, A) /
— Logical-Physical:
JOIN (A : B) to HASH_JOIN (A , B) ARTISTP<IAPPEARS ALBUMPAPPEARS ARTISTP<IALBUM
Can create "enforcer" rules LR I ——
that require input to have R \

certain properties.

ARTIST ALBUM APPEARS

$CMU-DB
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what » ARTEST o< APPEARS >t ALY
we want the query to be. :

Invoke rules to create new nodes HASH_JOIN' ~dA2,A3)

and traverse tree.

RN Logical—>L0gicalt MERGE_JOIN(A1P<IA2,A3)
JOINCA,B) to JOIN(B, A) /

— Logical-Physical:

JOIN (A ! B) to HASH_JOIN (A , B) ARTISTPAPPEARS ALBUMP<APPEARS ARTISTPALBUM

Can create "enforcer" rules T T —

that require input to have { \

certain properties.

ARTIST ALBUM APPEARS

$CMU-DB
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Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what » ARTIST bd APPEARS >d ALBUM

ORDER-BY (ARTIST.ID)

we want the query to be. t
Invoke rules to create new nodes HASH_JOIN'  ~dA2,A3)

and traverse tree.

L Logical—>Logical: MERGE_JOIN(A1PIA2,A3)
JOIN(A,B) to JOIN(B,A)
— Logical-Physical:
JOINCA.B) to HASH JOINCA.B ARTISTP<IAPPEARS ALBUMN{PPEARS ARTISTP<ALBUM
(A,B) to - (A,B) .

Can create "enforcer" rules
that require input to have
certain properties.

HASH_JOIN(A1,A2) MERGE_JOIN(A1,A2)

l \

ARTIST ALBUM APPEARS
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Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what ARTIST b< APPEARS >4 ALBUM
ORDER-BY (ARTIST.ID)

we want the query to be. t
Invoke rules to create new nodes » HASH_JOIN' ~A2,A3)

and traverse tree.

L Logical—>Logical: MERGE_JOIN(A1PA2,A3)
JOINCA,B) to JOIN(B, A) /
— Logical-Physical:
JOINCA.B) to HASH JOINCA.B ARTISTP<IAPPEARS ALBUMN{PPEARS ARTISTP<ALBUM
(A,B) to - (A,B) .

Can create "enforcer" rules
that require input to have
certain properties.

HASH_JOIN(A1,A2) MERGE_JOIN(A1,A2)

l \

ARTIST ALBUM APPEARS

$CMU-DB
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Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what ARTEST o< APPEARS >t ALY
we want the query to be. :

1

Invoke rules to create new nodes e —
and traverse tree.
— Logical—Logical:

HASH_JOIN/ ~IA2,A3)

MERGE_JOIN(A1DA2,A3)

HASH_JOIN(A1p<A2,A3)
JOIN(A,B) to JOIN(B,A) /
— Logical-Physical:
JOINCA.B) to HASH JOINCA.B ARTISTP<IAPPEARS ALBUMN{PPEARS ARTISTP<ALBUM
(A,B) to - (A,B) .

Can create "enforcer" rules
that require input to have
certain properties.

HASH_JOIN(A1,A2) MERGE_JOIN(A1,A2)

F——

ARTIST ALBUM APPEARS
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Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what ARTEST o< APPEARS >t ALY
we want the query to be. :

1

HASH_JOIN/ ~IA2,A3)

Invoke rules to create new nodes e —
and traverse tree.
— Logical—Logical:

MERGE_JOIN(A1DA2,A3)

HASH_JOI* 11><A2,A3)
JOIN(A,B) to JOIN(B,A) /
— Logical-Physical:
JOINCA.B) to HASH JOINCA.B ARTISTP<IAPPEARS ALBUMN{PPEARS ARTISTP<ALBUM
(A,B) to - (A,B) .

Can create "enforcer" rules
that require input to have
certain properties.

HASH_JOIN(A1,A2) MERGE_JOIN(A1,A2)

F——

ARTIST ALBUM APPEARS

$CMU-DB
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VOLCANO OPTIMIZER

Advantages:

— Use declarative rules to generate transformations.
— Better extensibility with an efficient search engine. Reduce
redundant estimations using memoization.

Disadvantages:

— All equivalence classes are completely expanded to generate
all possible logical operators before the optimization
search.

— Not easy to modify predicates.
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CASCADES OPTIMIZER

Object-oriented implementation of the previous

Volcano query optimizer.
— Top-down approach (backward chaining) using branch-
and-bound search.

Supports expression re-writing through a direct
mapping function rather than an exhaustive search.

— | THE CASCADES FRAMEWORK FOR EFFICIENCY IN THE COLUMBIA
UERY OPTIMIZATION DATABASE QUERY OPTIMIZER
IEEE DATA ENGINEERING BULLETIN 1995 =~ |PORTLAND STATE UNIVERSITY MS THESIS 1998

$2CMU-DB
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Graefe
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CASCADES: KEY IDEAS

Optimization tasks as data structures.
— Patterns to match + Transformation Rule to apply

Rules to place property enforcers.
— Ensures the optimizer generates correct plans.

Ordering of moves by promise.
— Dynamic task priorities to find optimal plan more quickly.

Predicates as logical/physical operators.
— Use same pattern/rule engine for expressions.

EFFICIENCY IN THE COLUMBIA
DATABASE QUERY OPTIMIZER
- |PORTLAND STATE UNIVERSITY MS THESIS 1998
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CASCADES: EXPRESSIONS

An expression represents some operation in the

query with zero or more input expressions.
— Optimizer needs to quickly determine whether two
expressions are equivalent.

SELECT * FROM A
JOIN B ON A.id
JOIN C ON C.1id

A.id;

Logical Expression: (A P4 B) X C
Physical Expression: (A, P<y; Bgoo) Py Cpyy
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CASCADES: GROUPS

A group is a set of logically equivalent logical and

physical expressions that produce the same output.

— All logical forms of an expression.

— All physical expressions that can be derived from selecting
the allowable physical operators for the corresponding
logical forms.

Logical Exps Physical Exps
§-4 Output: |1 (B> 1. (AseqPh Bseg) P Cocq
S [ABC] |2. (B<C)><A 2. (BseqPCseq) P Aseq
Q{S rovertice. i . 2Al><1C)l><1B 3. (AseqPICseq)>iBseq
ere : D<I(BI<IC) 4.. AseqP (CsePBseq)

$CMU-DB
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CASCADES: GROUPS

A group is a set of logically equivalent logical and

physical expressions that produce the same output.

— All logical forms of an expression.

— All physical expressions that can be derived from selecting
the allowable physical operators for the corresponding
logical forms.

Logical Exps Physical Exps
§.‘ Output: | (aBypcC 1. (AseqPBseq) >N Cseq ival
S [ABC] |2. (BC)A 2. (BgePh Coeq) P Aseq Equiva ent
~ Sropertics. 3. (AXC)B 3. (AseqPCseq) Py Bseq Expressions
g FOPA(;‘;'n;eS. 4. AN(BMC) 4°ASeqMNL(CSeqMNLBSeq)

$CMU-DB

15-721 (Spring 2024)
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CASCADES: MULTI-EXPRESSION

Instead of explicitly instantiating all possible
expressions in a group, the optimizer implicitly

represents redundant expressions in a group as a

multi-expression.

— This reduces the number of transformations, storage
overhead, and repeated cost estimations.

Output:
[ABC]

Properties:
None

Logical Multi-Exps

1

2
3
4

. [ABIXLC]
. [BCIX[A]
. [ACII[B]
. [AIXI[BC]

Physical Multi-Exps

1

2
3
4

. [ABIM,[C]
. [ABIM<,;[C]
. [ABI><,, [C]
. [BCIX,y[A]
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CASCADES: RULES

A rule is a transformation of an expression to a

logically equivalent expression.
— Transformation Rule: Logical to Logical
— Implementation Rule: Logical to Physical

Each rule is represented as a pair of attributes:

— Pattern: Defines the structure of the logical expression
that can be applied to the rule.

— Substitute: Defines the structure of the result after
applying the rule.
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CASCADES: RULES

Pattern
ADI[BC]

Transformation Rule / \
Rotate Left-to-Right | gerca) BIIC

GET(B) GET(C)

EQJOIN

[ABIXC

GET(C)
GROUP 1 GROUP 2 ,ﬂ} k\\

GET(A) GET(B)
Matching Plan
B Grow J

Logical Expr Implementation Rule
B Physical Expr EQJOIN-SORTMERGE | cer(a) GET(B)

EQJOIN GROUP 3

[ABID,C

GET(C)

$CMU-DB
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CASCADES: MEMO TABLE

Stores all previously explored alternatives in a
compact graph structure / hash table.

Equivalent operator trees and their corresponding
plans are stored together in groups.

Provides an overview of the optimizer's search

progress that is used in multiple ways:
— Transformation Result Memorization

— Duplicate Group Detection

— Property + Cost Management.

$2CMU-DB

15-721 (Spring 2024)
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PRINCIPLE OF OPTIMALITY

Every sub-plan of an optimal plan is itself optimal.

This allows the optimizer to restrict the search

space to a smaller set of expressions.

— The optimizer never has to consider a plan containing sub-
plan P1 that has a greater cost than equivalent plan P2 with
the same physical properties.

EXPLOITING UPPER AND LOWER BOUNDS IN
- | TOP-DOWN QUERY OPTIMIZATION
IDEAS 2001

$2CMU-DB

15-721 (Spring 2024)
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CASCADES: MEMO TABLE

[ABC] Output: I{ogiii;]b;lli:)g;s Physical M-Exps
[AB] [ABC] ’
[A] e
[B]
[C]
£CMU-DB

15-721 (Spring 2024)
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[ABC]

[AB]

[A]

[B]

[c1

$2CMU-DB

15-721 (Spring 2024)

CASCADES: MEMO TABLE

—

Output:
[ABC]

Properties:
None

Logical M-Exps

1/[AB][><1[C]

Physical M-Exps

Output:

[AB]

Properties:

None

Logical M-Exps
1. [AIXI[BI]

Physical M-Exps
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[ABC]

[AB]

[A]

[B]

[c1

CASCADES: MEMO TABLE

—

Output:
[ABC]

Properties:
None

Logical M-Exps

1/[AB][><1[C]

Physical M-Exps

Output:
[AB]

Logical M-Exps

1/[A]l><l[B]

Physical M-Exps

[A]

None

Output:

Properties:

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

$2CMU-DB

15-721 (Spring 2024)
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[ABC]

CASCADES: MEMO TABLE

[AB]

[A]

SeqScan(A)

"

[B]

[c1

ﬁ;m

—

Output:
[ABC]

Properties:
None

Logical M-Exps

y[AB]N[C]

Physical M-Exps

Output:
[AB]

Logical M-Exps

1/[A]l><l[B]

Physical M-Exps

Output:
[A]

Properties:
None

Logical M-Exps Physical M-Exps

1. GET(A) [1. SeqScan(a) ]

2. IdxScan(A)

$2CMU-DB

15-721 (Spring 2024)
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CASCADES: MEMO TABLE

0,
[ABC] Output: Logical M-Exps Physical M-Exps
[AB] [ABCT y[AB]N[C]
[A1 | SeqgScan(A) 10 e
[B]
[C]
. | Logical M-Exps Physical M-Exps
Output: | ™ ATbarB]
[AB]
Properties:
None
Cost: 10
. | Logical M-Exps Physical M-Exps . | Logical M-Exps Physical M-Exps
OUEK‘]"" 1. GET(A) [[C_Seqscana) ] OUEE‘]’t' 1. GET(B) 1. SegScan(B)
2. IdxScan(A) 2. IdxScan(B)
Properties: Properties:
None None
£=CMU-DB

15-721 (Spring 2024)
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[ABC]

[AB]

[A] SegScan(A)

10

[B] SegScan(B)

[c1

CASCADES: MEMO TABLE

i /

Output:
[ABC]

Properties:
None

Logical M-Exps

1/[AB][><1[C]

Physical M-Exps

Output: %og1iigbzii§ps Physical M-Exps
[AB] '
Properties:
None
Cost: 10 Cost: 20
. | Logical M-Exps Physical M-Exps . | Logical M-Exps Physical M-Exps
OUEK‘]"" 1. GET(A) [[C_Seqscana) ] OUEE‘]’t' 1. GET(B) [[C_Seqscan(®) ]
2. IdxScan(A) 2. IdxScan(B)
Properties: Properties:
None None
£=CMU-DB
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CASCADES: MEMO TABLE

AB : _ . _
[ABC] Output: I1.og1ii;]b;<llli:)g;s Physical M-Exps
[AB] [ABC] /
[A1 | SeqgScan(A) 10 e
[B] SegScan(B) 20
[C]
Output: Logical M-Exps Physical M-Exps
[AB] 1. [AIXIB]
2. @[BIXI[A]
Properties:
None
m‘ost: 10 Cost: 20
. | Logical M-Exps Physical M-Exps . | Logical M-Exps Physical M-Exps
OUEK‘]"" 1. GET(A) [[C_Seqscana) ] OUEE‘]’t' 1. GET(B) [[C_Seqscan(®) ]
2. IdxScan(A) 2. IdxScan(B)
Properties: Properties:
None None
£=CMU-DB
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[ABC]

[AB]

[A] SegScan(A)

10 M
-

CASCADES: MEMO TABLE

Output:
[ABC]

Properties:
None

Logical M-Exps

1/[AB][><1[C]

Physical M-Exps

[B] SegScan(B) 20 /
[C]
Output: Logical M-Exps Physical M-Exps
[AB] 1. [AIXIB]
2 ) 1<rA1YE
Properties:
None
Cost: 10 Cost: 20
. | Logical M-Exps Physical M-Exps . | Logical M-Exps Physical M-Exps
OUEK‘]"" 1. GET(A) [[C_Seqscana) ] OUEE‘]’t' 1. GET(B) [[C_Seqscan(®) ]
2. IdxScan(A) 2. IdxScan(B)
Properties: Properties:
None None
£=CMU-DB

15-721 (Spring 2024)



https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

CASCADES: MEMO TABLE

AB . i . _
[ABC] Output: I1.og1<Ei;]I‘;<]IIE:)((:;;s Physical M-Exps
[AB] [ABC] /
[A1 | SegScan(A) 10 e
[B] SegScan(B) 20 /
[C]
. | Logical M-Exps Physical M-Exps
°“[tApB“]t' 1. [AINIBI 1. [AT[B]
2. [BIXI[AI] 2. [AIx;[B]
Prop;:;:es: 3. [B]NNL[A]
4. [BIX,;[A]
Cost: 10 Cost: 20
. | Logical M-Exps Physical M-Exps . | Logical M-Exps Physical M-Exps
OUEK‘]"" 1. GET(A) [[C_Seascan(A) ] OUEE‘]’t' 1. GET(B) [[__Seascan(B) ]
2. IdxScan(A) 2. IdxScan(B)
Properties: Properties:
None None
£=CMU-DB
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CASCADES: MEMO TABLE

[ABC] Output: I{ogiii;]b;lli:)g;s Physical M-Exps
(a1| AT, (B 80 ‘ [ABC] /
[A]1 | SeaScan(A) 10 e
[B] SegScan(B) 20
[cl Cost: 50+(10+20)
. | Logical M-Exps Physical M-Exps
°“[tApB“]t' 1. [AIIBI 1. [AJbdy[B]
2. [BIXI[AI] 2. [AIX,,[B]
Prop;‘:;:es: 3. [B]NNL[A]
4. [BIX,;[A]
Cost: 10 Cost: 20
. | Logical M-Exps Physical M-Exps . | Logical M-Exps Physical M-Exps
OUEK‘]"" 1. GET(A) [[C_Seascan(A) ] OUEE‘]’t' 1. GET(B) [[__Seascan(B) ]
2. IdxScan(A) 2. IdxScan(B)
Properties: Properties:
None None
£=CMU-DB
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CASCADES: MEMO TABLE

ABC i - i -
[ABC] Output: Logical M-Exps Physical M-Exps

[AB]| [AIN;[B] 80 [ABC] y[AB]N[C]\
10 Properties:

[A] Sechan(A) /Vane/ \

[B] SegScan(B) 20
[c1 Cost: 50+(10+20) \

. | Logical M-Exps Physical M-Exps . | Logical M-Exps Physical M-Exps
oul:tApB”]t' 1. [AIXIB] 1. [AI>d, [B] OuEg‘jt' 1. GET(C)
2. [BIXI[AI] 2. [AIX,,[B]
Properties: 3. [B]NNL[A] Properties:
None 4. [B]NHJ[A] None
Cost: 10 Cost: 20
. | Logical M-Exps Physical M-Exps . | Logical M-Exps Physical M-Exps
OUEK‘]"" 1. GET(A) [[C_Seqscana) ] OUEE‘]’t' 1. GET(B) [[C_Seqscan(®) ]
2. IdxScan(A) 2. IdxScan(B)
Properties: Properties:
None None
£2CMU-DB
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CASCADES: MEMO TABLE

Cost: 5

Logical M-Exps

Physical M-Exps
1. SegScan(C)

|2. IdxScan(C)

[ABC] Output: #ogiii;]:;iégs Physical M-Exps
[AB]| [AId<,,[B] 80 [ABC] / \
[A]1 | SeaScan(A) 10 e
[B] SegScan(B) 20 \
rc1 | tdxscan(o) 5 # Cost: 50+(10+20) \
. | Logical M-Exps Physical M-Exps .
oul:tApB”]t' 1. [AIXIB] 1. [AI>d, [B] OuEg‘jt' 1. GET(C)
2. [BIXI[AI] 2. [AIX,,[B]
Prop;;;:es: 3. [B]NNL[A] Prop;:,:::es:
4. [BIX,;[A]
Cost: 10 Cost: 20
. | Logical M-Exps Physical M-Exps . | Logical M-Exps Physical M-Exps
OUEK‘]"" 1. GET(A) [[C_Seqscana) ] OUEE‘]’t' 1. GET(B) [[C_Seqscan(®) ]
2. IdxScan(A) 2. IdxScan(B)
Properties: Properties:
None None
£=CMU-DB
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CASCADES: MEMO TABLE

[ABC] Output: Logical M-Exps Physical M-Exps
" 11. [ABIXILC] 1. [ABIM«,C
[ABI[ [AI>,[B] f 80 [ABCI 15" [BcIrAl |2, [BCIDdA
[A1 | SegScan(A) 10 Properties: | 3. [AC][B] 3. [ACIxqB
4. [BIXIAC] :
[B] SegScan(B) 20
rc1 | tdxscan(o) 5 Cost: 50+(10+20) Cost: 5
. | Logical M-Exps Physical M-Exps . | Logical M-Exps Physical M-Exps
oul:tApB”]t' 1. [AIIBI 1. [AI,[B] ouEg‘it' 1. GET(C) 1. SegScan(C)
2. [BIXIA] 2.  [AIX,,[B] [2. IdxScan(C)
Prop;:;:es: 3. [B]NNL[A] Prop;or,:::es:
4. [BIX,;[A]
Cost: 10 Cost: 20
. | Logical M-Exps Physical M-Exps . | Logical M-Exps Physical M-Exps
OUEK‘]"" 1. GET(A) [[C_Seqscana) ] OUEE‘]’t' 1. GET(B) [[C_Seqscan(®) ]
2. IdxScan(A) 2. IdxScan(B)
Properties: Properties:
None None
£=CMU-DB
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CASCADES: MEMO TABLE

Best Exp : Cost: 40+(80+5)
[ABC]| (CAI><,,[BI>,,[CT| 125 Output: Logical M-Exps Physical M-Exps
" 11. [ABIXILC] 1. [ABIpq,C
[AB]| [AI,[B] | 80 [ABCI 150 [BCINIAT |2, [BCTiuA
[A] | SeaScan(A) 10 Properties: | 3. [ACIXI[B] 3. [ACIrqB
4. [BIXI[LAC] :
[B] SegScan(B) 20
rc1 | tdxscan(o) 5 Cost: 50+(10+20) Cost: 5
. | Logical M-Exps Physical M-Exps . | Logical M-Exps Physical M-Exps
oul:tApB”]t' 1. [AIIBI 1. [AI,[B] ouEg‘it' 1. GET(C) 1. SegScan(C)
2. [BIXIA] 2.  [AIX,,[B] [2. IdxScan(C)
Prop;;;:es: 3. [B]NNL[A] Prop;:,:::es:
4. [BIX,;[A]
Cost: 10 Cost: 20
. | Logical M-Exps Physical M-Exps . | Logical M-Exps Physical M-Exps
OUEK‘]"" 1. GET(A) [[C_Seqscana) ] OUEE‘]’t' 1. GET(B) [[C_Seqscan(®) ]
2. IdxScan(A) 2. IdxScan(B)
Properties: Properties:
None None
£=CMU-DB
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CASCADES IMPLEMENTATIONS

Standalone:
— Wisconsin OPT++ (1990s)
— Portland State Columbia (1990s)

— Greenplum Orca (2010s)
— Apache Calcite (2010s)

Integrated:

— Microsoft SQL Server (1990s)
— Tandem NonStop SQL (1990s)
— CockroachDB (2010s)

£=CMU-DB
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RANDOMIZED ALGORITHMS

Perform a random walk over a solution space of all
possible (valid) plans for a query.

Continue searching until a cost threshold is reached
or the optimizer runs for a length of time.

Examples: Postgres’ genetic algorithm.

$2CMU-DB
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SIMULATED ANNEALING

Start with a query plan that is generated using the
heuristic-only approach.

Compute random permutations of operators (e.g.,

swap the join order of two tables):

— Always accept a change that reduces cost.

— Only accept a change that increases cost with some
probability.

— Reject any change that violates correctness (e.g., sort
ordering).

i

w:% UERY OPTIMIZATION BY SIMULATED ANNEALING
&8 SIGMOD 1987

TR

it

$2CMU-DB
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POSTGRES GENETIC OPTIMIZER

More complicated queries use a genetic algorithm
that selects join orderings (GEQO).

At the beginning of each round, generate different
variants of the query plan.

Select the plans that have the lowest cost and

permute them with other plans. Repeat.
— The mutator function only generates valid plans.

Source: Postgres Documentation

$2CMU-DB
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POSTGRES GENETIC OPTIMIZER

Ist Generation

Cost:
300

Cost:
200

Cost:
100
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POSTGRES GENETIC OPTIMIZER |a 1

s R
. Best: 100
Ist Generation
T (ot
N
R S
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POSTGRES GENETIC OPTIMIZER |a 1

>R
S R

Best:100

Ist Generation

Cost:
300
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POSTGRES GENETIC OPTIMIZER |a 1

>R
S R

Best:100

Ist Generation

Cost:
300

Cost:
200

%
Cost:
| T e
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POSTGRES GENETIC OPTIMIZER |a 1

s R
. . Best:100
Ist Generation _ 2nd Generation

Cost: -l)-' 'h

300 j 1 |

S R

Cost: mmm n{' \S
200 HEN 1o |
R T

o

m T Cost: » ﬁ' S
xR 100 : S
S R : T R
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POSTGRES GENETIC OPTIMIZER |a 1

§ R
. . Best: 100
Ist Generation _ 2nd Generation
Cost: -l)-' 'h Cost:
300 : o § 80
S R
Cost: . n{' \S Cost:
200 j 1 | 200
R T
m| o
lﬂ T Cost: Iﬁ' S Cost:
j 1 | 100 - M 110
oM S R 5 T R
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POSTGRES GENETIC OPTIMIZER |7 ) 1

S R
Best:80

Ist Generation _ 2nd Generation
Cost: Cost:
300 80
Cost: Cost:
200 200
lﬂ’ ‘-“l- Cost: Cost:
j i} 100 110
‘—ECML
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POSTGRES GENETIC OPTIMIZER

Ist Generation

Cost:

300

Cost:

200

Cost:

100

2nd Generation

el

s

Cost:

80

Cost:

200

Cost:

110

T i
S R
Best:80
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POSTGRES GENETIC OPTIMIZER |7 ) 1

S R
Best: 80

Ist Generation _ 2nd Generation _ 3rd Generation
Cost: -l)-' Cost: : -l)-' vh Cost:
300 HJ go I J -7 T
R_S
Cost: g |Cost: ‘-} Cost: °°°
200 W ! 200 A 160
: T : R S
V.S . w . y 4
lﬂ T Cost: » - S Cost: » S vh Cost:
] 100 : LA 110 : LM | 120
<MS__R : T R : R T
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RANDOMIZED ALGORITHMS

Advantages:

— Jumping around the search space randomly allows the
optimizer to get out of local minimums.

— Low memory overhead (if no history is kept).

Disadvantages:

— Difficult to determine why the DBMS may have chosen a
plan.

— Must do extra work to ensure that query plans are
deterministic.

— Still must implement correctness rules.
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RANDOMIZED ALGORITHMS

Advantages:
— Jumping arour

optimizer to g
— Low memory
Disadvantage
— Difficult to de

plan.
— Must do extra

deterministic.
— Still must imp

Still Not Efficient

The work that we’re performing per “relation” is not a constant! We consider many possibilities per
“relation,” throw away the ones that are clearly inferior, and keep the ones that look most promising.

* Still doesn’t scale to large join problems. We're avoiding recomputation, but still searching a very
large problem space.

* When the number of tables exceeds geqgo_threshold (by default, 12), we switch to GEQO, the
“genetic query optimizer.” It essentially tries’a bunch of join orders at random and picks the best
one. If you're lucky, it won’t be too bad.
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PARTING THOUGHTS

Query optimization is hard.

This difficulty is why NoSQL systems didn't
implement optimizers (at first).

Playlist of CMU-DB Query Optimizer talks:

— https://cmudb.io/youtube-optimizers

$2CMU-DB
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