
ADVANCED
DATABASE

SYSTEMS

Andy Pavlo
CMU 15-721
Spring 202414

Query
Optimizer

Implementation
Part 2

https://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/
https://db.cs.cmu.edu/

15-721 (Spring 2024)

LAST CLASS

Choice #1: Heuristics
→ INGRES, Oracle (until mid 1990s)

Choice #2: Heuristics + Cost-based Join Search
→ System R, early IBM DB2, most open-source DBMSs

Choice #3: Stratified Search
→ IBM’s STARBURST (late 1980s), now IBM DB2 + Oracle

Choice #4: Unified Search
→ Volcano/Cascades in 1990s, now MSSQL + Greenplum

Choice #5: Randomized Search
→ Academics in the 1980s, current Postgres

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

STRATIFIED SEARCH

First rewrite the logical query plan using
transformation rules.
→ The engine checks whether the transformation is allowed

before it can be applied.
→ Cost is never considered in this step.

Then perform a cost-based search to map the logical
plan to a physical plan.

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

UNIFIED SEARCH

Unify the notion of both logical→logical and
logical→physical transformations.
→ No need for separate stages because everything is

transformations.

This approach generates many transformations, so
it makes heavy use of memoization to reduce
redundant work.

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TOP-DOWN VS. BOTTOM-UP

Top-down Optimization
→ Start with the outcome that the query wants, and then

work down the tree to find the optimal plan that gets you
to that goal.

→ Examples: Volcano, Cascades

Bottom-up Optimization
→ Start with nothing and then build up the plan to get to the

outcome that you want.
→ Examples: System R, Starburst

5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TODAY’S AGENDA

Unified Search

Randomized Search

Real-World Implementations

Unnesting Subqueries

7

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES OPTIMIZER

Object-oriented implementation of the previous
Volcano query optimizer.
→ Top-down approach (backward chaining) using branch-

and-bound search.

Supports expression re-writing through a direct
mapping function rather than an exhaustive search.

8

THE CASCADES FRAMEWORK FOR
QUERY OPTIMIZATION
IEEE DATA ENGINEERING BULLETIN 1995

Graefe

EFFICIENCY IN THE COLUMBIA
DATABASE QUERY OPTIMIZER
PORTLAND STATE UNIVERSITY MS THESIS 1998

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer1/graefe-ieee1995.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer1/graefe-ieee1995.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/xu-columbia-thesis1998.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/xu-columbia-thesis1998.pdf

15-721 (Spring 2024)

CASCADES: KEY IDEAS

Optimization tasks as data structures.
→ Patterns to match + Transformation Rule to apply

Rules to place property enforcers.
→ Ensures the optimizer generates correct plans.

Ordering of moves by promise.
→ Dynamic task priorities to find optimal plan more quickly.

Predicates as logical/physical operators.
→ Use same pattern/rule engine for expressions.

9

EFFICIENCY IN THE COLUMBIA
DATABASE QUERY OPTIMIZER
PORTLAND STATE UNIVERSITY MS THESIS 1998

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/xu-columbia-thesis1998.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/xu-columbia-thesis1998.pdf

15-721 (Spring 2024)

CASCADES: EXPRESSIONS

An expression represents some operation in the
query with zero or more input expressions.
→ Optimizer needs to quickly determine whether two

expressions are equivalent.

Logical Expression: (A ⨝ B) ⨝ C

Physical Expression: (ASeq ⨝HJ BSeq) ⨝NL CIdx

10

SELECT * FROM A
 JOIN B ON A.id = B.id
 JOIN C ON C.id = A.id;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: GROUPS

A group is a set of logically equivalent logical and
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from selecting

the allowable physical operators for the corresponding
logical forms.

11

Output:
[ABC]

Properties:
None

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
 ⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
 ⋮

G
ro

u
p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: GROUPS

A group is a set of logically equivalent logical and
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from selecting

the allowable physical operators for the corresponding
logical forms.

11

Output:
[ABC]

Properties:
None

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
 ⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
 ⋮

Equivalent
Expressions

G
ro

u
p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MULTI-EXPRESSION

Instead of explicitly instantiating all possible
expressions in a group, the optimizer implicitly
represents redundant expressions in a group as a
multi-expression.
→ This reduces the number of transformations, storage

overhead, and repeated cost estimations.

12

Output:
[ABC]

Properties:
None

Logical Multi-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [A]⨝[BC]
 ⋮

Physical Multi-Exps
1. [AB]⨝SM[C]
2. [AB]⨝HJ[C]
3. [AB]⨝NL[C]
4. [BC]⨝SM[A]
 ⋮

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: RULES

A rule is a transformation of an expression to a
logically equivalent expression.
→ Transformation Rule: Logical to Logical
→ Implementation Rule: Logical to Physical

Each rule is represented as a pair of attributes:
→ Pattern: Defines the structure of the logical expression

that can be applied to the rule.
→ Substitute: Defines the structure of the result after

applying the rule.

13

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Pattern

CASCADES: RULES

14

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

Transformation Rule
Rotate Left-to-Right

Implementation Rule
EQJOIN→SORTMERGE

A⨝[BC]

GET(A)

GET(B) GET(C)

B⨝C

[AB]⨝SMC

A⨝SMB

GET(A) GET(B)

GET(C)

[AB]⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan
Group

Logical Expr

Physical Expr

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

Stores all previously explored alternatives in a
compact graph structure / hash table.

Equivalent operator trees and their corresponding
plans are stored together in groups.

Provides an overview of the optimizer's search
progress that is used in multiple ways:
→ Transformation Result Memorization
→ Duplicate Group Detection
→ Property + Cost Management.

15

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PRINCIPLE OF OPTIMALITY

Every sub-plan of an optimal plan is itself optimal.

This allows the optimizer to restrict the search
space to a smaller set of expressions.
→ The optimizer never has to consider a plan containing sub-

plan P1 that has a greater cost than equivalent plan P2 with
the same physical properties.

16

EXPLOITING UPPER AND LOWER BOUNDS IN
TOP-DOWN QUERY OPTIMIZATION
IDEAS 2001

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/shapiro-ideas2001.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/shapiro-ideas2001.pdf

15-721 (Spring 2024)

CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Cost: 10

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

Cost: 50+(10+20)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

[A]⨝HJ[B] 80

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Properties:
None

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

[A]⨝HJ[B] 80

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Properties:
None

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝HJ[B] 80

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Properties:
None

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝HJ[B] 80

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Properties:
None

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

Cost: 40+(80+5)

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝HJ[B] 80

([A]⨝HJ[B])⨝HJ[C] 125

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CASCADES IMPLEMENTATIONS

Standalone:
→ Wisconsin OPT++ (1990s)
→ Portland State Columbia (1990s)
→ Greenplum Orca (2010s)
→ Apache Calcite (2010s)

Integrated:
→ Microsoft SQL Server (1990s)
→ Tandem NonStop SQL (1990s)
→ CockroachDB (2010s)

18

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://pages.cs.wisc.edu/~navin/research/apg.html
http://web.cecs.pdx.edu/~len/Columbia/
https://github.com/greenplum-db/gporca
https://calcite.apache.org/
http://www.vldb.org/conf/1996/P592.PDF

15-721 (Spring 2024)

RANDOMIZED ALGORITHMS

Perform a random walk over a solution space of all
possible (valid) plans for a query.

Continue searching until a cost threshold is reached
or the optimizer runs for a length of time.

Examples: Postgres’ genetic algorithm.

19

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SIMULATED ANNEALING

Start with a query plan that is generated using the
heuristic-only approach.

Compute random permutations of operators (e.g.,
swap the join order of two tables):
→ Always accept a change that reduces cost.
→ Only accept a change that increases cost with some

probability.
→ Reject any change that violates correctness (e.g., sort

ordering).

20

QUERY OPTIMIZATION BY SIMULATED ANNEALING
SIGMOD 1987

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://dl.acm.org/citation.cfm?id=38722
http://dl.acm.org/citation.cfm?id=38722

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

More complicated queries use a genetic algorithm
that selects join orderings (GEQO).

At the beginning of each round, generate different
variants of the query plan.

Select the plans that have the lowest cost and
permute them with other plans. Repeat.
→ The mutator function only generates valid plans.

21

Source: Postgres Documentation

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://www.postgresql.org/docs/9.4/static/geqo-pg-intro.html

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

22

Best:100
1st Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

22

Best:100
1st Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

22

Best:100
1st Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

22

Best:100
1st Generation 2nd Generation

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

22

1st Generation 2nd Generation
Best:80

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

22

1st Generation 2nd Generation
Best:80

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

POSTGRES GENETIC OPTIMIZER

22

1st Generation 2nd Generation 3rd Generation

…

Best:80

R S

T

NL

NL
Cost:
300

T R

S

NL

HJ

S R

T

HJ

HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S

HJ

HJ

Cost:
80

Cost:
200

Cost:
110

R S

T

HJ

HJ

R S

T

HJ

HJ

R T

S

HJ

HJ

Cost:
90

Cost:
160

Cost:
120

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

RANDOMIZED ALGORITHMS

Advantages:
→ Jumping around the search space randomly allows the

optimizer to get out of local minimums.
→ Low memory overhead (if no history is kept).

Disadvantages:
→ Difficult to determine why the DBMS may have chosen a

plan.
→ Must do extra work to ensure that query plans are

deterministic.
→ Still must implement correctness rules.

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

RANDOMIZED ALGORITHMS

Advantages:
→ Jumping around the search space randomly allows the

optimizer to get out of local minimums.
→ Low memory overhead (if no history is kept).

Disadvantages:
→ Difficult to determine why the DBMS may have chosen a

plan.
→ Must do extra work to ensure that query plans are

deterministic.
→ Still must implement correctness rules.

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/XA3SBgcZwtE?t=637

15-721 (Spring 2024)

DYNAMIC PROGRAMMING OPTIMIZER

Model the query as a hypergraph and then
incrementally expand to enumerate new plans.

Algorithm Overview:
→ Iterate connected sub-graphs and incrementally add new

edges to other nodes to complete query plan.
→ Use rules to determine which nodes the traversal is allowed

to visit and expand.

24

DYNAMIC PROGRAMMING STRIKES BACK
SIGMOD 2008

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/p539-moerkotte.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/p539-moerkotte.pdf

15-721 (Spring 2024)

REAL-WORLD IMPLEMENTATIONS

Microsoft SQL Server

Apache Calcite

Greenplum Orca

CockroachDB

SingleStore

Snowflake

25

Cascades

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

MICROSOFT SQL SERVER

First Cascades implementation started in 1995.
→ Derivatives are used in many MSFT database products.
→ All transformations are written in C++. No DSL.
→ Scalar / expression transformations are written in

procedural code and not rules.

DBMS applies transformations in multiple stages
with increasing scope and complexity.
→ The goal is to leverage domain knowledge to apply

transformations that you always want to do first to reduce
the search space.

26

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Tree-to-Tree
Transformations

Cost-based Search
Initialization

Multi-Stage
Cost-Based Search

Engine-Specific
Transformations

Sub-Query Removal
Outer Joins to Inner Joins
Predicate Pushdown
Empty Result Pruning

Stage1: Trivial Plan
Stage2: Quick Plan (Parallel)
Stage3: Full Plan (Parallel)

MICROSOFT SQL SERVER

27

Simplification /
Normalization

Pre-Exploration Exploration Post-Optimization

Trivial Plan Short-circuit
Projection Normalization
Statistics Identification/Collection
Initial Cardinality Estimates
Join Collapsing

Source: Nico Bruno + Cesar Galindo-Legaria

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/pQe1LQJiXN0

15-721 (Spring 2024)

MICROSOFT SQL SERVER

Optimization #1: Timeouts are based on the
number of transformations not wallclock time.
→ Ensures that overloaded systems do not generate different

plans than under normal operations.

Optimization #2: Pre-populate the Memo Table
with potentially useful join orderings.
→ Heuristics that consider relationships between tables.
→ Syntactic appearance in query.

28

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

APACHE CALCITE

Standalone extensible query optimization
framework for data processing systems.
→ Support for pluggable query languages, cost models, and

rules.
→ Does not distinguish between logical and physical

operators. Physical properties are provided as annotations.

Originally part of LucidDB.

29

APACHE CALCITE: A FOUNDATIONAL FRAMEWORK FOR OPTIMIZED
QUERY PROCESSING OVER HETEROGENEOUS DATA SOURCES
SIGMOD 2018

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dbdb.io/db/luciddb
https://dl.acm.org/doi/10.1145/3183713.3190662
https://dl.acm.org/doi/10.1145/3183713.3190662

15-721 (Spring 2024)

GREENPLUM ORCA

Standalone Cascades implementation in C++.
→ Originally written for Greenplum.
→ Extended to support HAWQ.

A DBMS integrates Orca by implementing API to
send catalog + stats + logical plans and then retrieve
physical plans.

Supports multi-threaded search.

30

ORCA: A MODULAR QUERY OPTIMIZER
ARCHITECTURE FOR BIG DATA
SIGMOD 2014

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://greenplum.org/
http://hawq.apache.org/
https://dl.acm.org/doi/10.1145/2588555.2595637
https://dl.acm.org/doi/10.1145/2588555.2595637

15-721 (Spring 2024)

GREENPLUM ORCA: ENGINEERING

Issue #1: Remote Debugging
→ Automatically dump the state of the optimizer (with

inputs) whenever an error occurs.
→ The dump is enough to put the optimizer back in the exact

same state later for further debugging.

Issue #2: Optimizer Accuracy
→ Automatically check whether the ordering of the estimate

cost of two plans matches their actual execution cost.

31

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

COCKROACHDB

Custom Cascades implementation written in 2018.

All transformation rules are written in a custom
DSL (OptGen) and then codegen into Go-lang.
→ Can embed Go logic in rule to perform more complex

analysis and modifications.

Also considers scalar expression (predicates)
transformations together with relational operators.

32

Source:Source: Rebecca Taft

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://github.com/cockroachdb/cockroach/blob/master/pkg/sql/opt/optgen/lang/doc.go
https://youtu.be/wHo-VtzTHx0

15-721 (Spring 2024)

COCKROACHDB

Custom Cascades implementation written in 2018.

All transformation rules are written in a custom
DSL (OptGen) and then codegen into Go-lang.
→ Can embed Go logic in rule to perform more complex

analysis and modifications.

Also considers scalar expression (predicates)
transformations together with relational operators.

32

Source:Source: Rebecca Taft

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://github.com/cockroachdb/cockroach/blob/master/pkg/sql/opt/optgen/lang/doc.go
https://youtu.be/wHo-VtzTHx0
https://youtu.be/wHo-VtzTHx0

15-721 (Spring 2024)

SUBQUERIES

SQL allows a nested SELECT subquery to exist
(almost?) anywhere in another query.
→ Projection, FROM, WHERE, LIMIT, HAVING
→ Results of the inner subquery are passed to the outer query.

Such nesting enables more expressive queries
without having to use separate queries to prepare
intermediate results.

35

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SUBQUERIES

SQL allows a nested SELECT subquery to exist
(almost?) anywhere in another query.
→ Projection, FROM, WHERE, LIMIT, HAVING
→ Results of the inner subquery are passed to the outer query.

Such nesting enables more expressive queries
without having to use separate queries to prepare
intermediate results.

Key Distinction: Uncorrelated vs. Correlated

35

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

UNCORRELATED SUBQUERY

An uncorrelated subquery does
reference any attributes from the
(calling) outer query.

The DBMS logically executes it once
and reuse the result for all tuples in
the outer query.

36

SELECT name
 FROM students
 WHERE score =
 (SELECT MAX(score) FROM students);

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

37

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

37

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

s1.major='CompSci'

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

37

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

s1.major='CompSci'

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

37

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

s1.major='CompSci' MAX(s2.score)=90

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

37

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

GZA CompSci
name major

s1.major='CompSci' MAX(s2.score)=90

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

37

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

GZA CompSci
name major

s1.major='CompSci'

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

37

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

GZA CompSci
name major

s1.major='CompSci'

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

37

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

GZA CompSci
name major

s1.major='CompSci' MAX(s2.score)=90

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

37

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

GZA CompSci
name major

s1.major='Streets'

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

37

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

GZA CompSci
name major

s1.major='Streets'

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CORRELATED SUBQUERY

A correlated subquery refers to one or
more attributes from outside of the
subquery (i.e., the outer query).

The DBMS logically evaluates the
subquery on each tuple in the outer
query because the result can change
per tuple.

37

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

GZA CompSci
ODB Streets

name major

s1.major='Streets' MAX(s2.score)=100

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

HEURISTIC REWRITING

Almost every DBMS that supports
uses heuristics that identify specific
query plan patterns to decorrelate
nested subqueries.

The goal is to move the subquery up a
level so that the DBMS can execute it
as a join.

39

ORTHOGONAL OPTIMIZATION OF SUBQUERIES
AND AGGREGATION
SIGMOD 2001

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

SELECT s1.name, s1.major
 FROM students AS s1
 JOIN (SELECT major,
 MAX(s2.score) AS max_score
 FROM students
 GROUP BY major) AS s2
 ON s1.major = s2.major
 AND s1.score = s2.max_score

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf
https://sigmodrecord.org/publications/sigmodRecord/0106/pdfs/Orthogonal%20Optimization%20of%20Subqueries%20and%20Aggregation.pdf

15-721 (Spring 2024)

HEURISTIC REWRITING

Almost every DBMS that supports
uses heuristics that identify specific
query plan patterns to decorrelate
nested subqueries.

The goal is to move the subquery up a
level so that the DBMS can execute it
as a join.

39

ORTHOGONAL OPTIMIZATION OF SUBQUERIES
AND AGGREGATION
SIGMOD 2001

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

SELECT s1.name, s1.major
 FROM students AS s1
 JOIN (SELECT major,
 MAX(s2.score) AS max_score
 FROM students
 GROUP BY major) AS s2
 ON s1.major = s2.major
 AND s1.score = s2.max_score

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf
https://sigmodrecord.org/publications/sigmodRecord/0106/pdfs/Orthogonal%20Optimization%20of%20Subqueries%20and%20Aggregation.pdf

15-721 (Spring 2024)

HEURISTIC REWRITING

Almost every DBMS that supports
uses heuristics that identify specific
query plan patterns to decorrelate
nested subqueries.

The goal is to move the subquery up a
level so that the DBMS can execute it
as a join.

39

ORTHOGONAL OPTIMIZATION OF SUBQUERIES
AND AGGREGATION
SIGMOD 2001

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

SELECT s1.name, s1.major
 FROM students AS s1
 JOIN (SELECT major,
 MAX(s2.score) AS max_score
 FROM students
 GROUP BY major) AS s2
 ON s1.major = s2.major
 AND s1.score = s2.max_score

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf
https://sigmodrecord.org/publications/sigmodRecord/0106/pdfs/Orthogonal%20Optimization%20of%20Subqueries%20and%20Aggregation.pdf
https://www.sqlite.org/optoverview.html#subquery_flattening

15-721 (Spring 2024)

HEURISTIC REWRITING

Advantages:
→ Transformed queries are more efficient.
→ Decision to decorrelate can be a cost-based decision.
→ Easy to control decorrelation by enabling/disabling rules.

Disadvantages:
→ Hard to write rules for all possible correlations scenarios.
→ Changing a small part of a query can make rules ineffective
→ Maintaining transformation rules is a difficult.
→ Handling all edge cases is exceedingly difficult.

40

Source: Mayank Baranwal

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/mayank--baranwal/

15-721 (Spring 2024)

GERMAN-STYLE UNNESTING SUBQUERIES

General-purpose method to eliminate all dependent
joins by manipulating the query plan until the RHS
no longer depends on the LHS.

The optimizer then converts dependent joins to
regular joins.
→ Some queries switch from a O(n2) nested-loop join to a

O(n) hash join.

41

UNNESTING ARBITRARY QUERIES
BTW 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.gi.de/items/137d6917-d8fe-43aa-940b-e27da7c01625
https://dl.gi.de/items/137d6917-d8fe-43aa-940b-e27da7c01625

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Introduce a dependent join
operator to execute RHS once
for every tuple in LHS.

42

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = SUBQUERY

SCAN
students s1

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Introduce a dependent join
operator to execute RHS once
for every tuple in LHS.

42

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = SUBQUERY

SCAN
students s1

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Introduce a dependent join
operator to execute RHS once
for every tuple in LHS.

42

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = SUBQUERY

SCAN
students s1

SCAN
students s2

DEPENDENT_JOIN

FILTER
s2.major=s1.major

AGGREGATE
MAX(score)

SCAN
students s1

FILTER
#0.0 = #1.0

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

DEPENDENT JOIN

New dependent join relational algebra operator
that denotes a correlated subquery.
→ Evaluate RHS of the join for every tuple on the LHS.
→ The operator combine results from every execution and

return them as its output.

43

DEPENDENT_JOIN

SCAN
RHS

SCAN
LHS

Source: Mayank Baranwal

L1
L2
L3

id
R1
R2
R3

id

L1
L1
L2

id
R1
R2
R2

id

⋮ ⋮

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/mayank--baranwal/

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Push dependent join down into
the RHS of the plan.

Only need to execute RHS once
for every unique combination
of correlated columns.
→ Duplicate Elimination Scan

44

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

SCAN
students s2

DEPENDENT_JOIN

FILTER
s2.major=s1.major

AGGREGATE
MAX(score)

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Push dependent join down into
the RHS of the plan.

Only need to execute RHS once
for every unique combination
of correlated columns.
→ Duplicate Elimination Scan

44

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

DEPENDENT_JOIN

DUP_ELIM_SCAN
students d

SCAN
students s2

FILTER
s2.major=d.major

AGGREGATE
MAX(score)

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Keeping pushing dependent
join as far down into the plan as
is possible.

45

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

SCAN
students s2

DEPENDENT_JOIN

DUP_ELIM_SCAN
students d

FILTER
s2.major=d.major

AGGREGATE
MAX(score)

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Keeping pushing dependent
join as far down into the plan as
is possible.

45

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

SCAN
students s2

AGGREGATE
MAX(score) GROUP BY(d.major)

DUP_ELIM_SCAN
students d

FILTER
s2.major=d.major

DEPENDENT_JOIN

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Keeping pushing dependent
join as far down into the plan as
is possible.

45

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

SCAN
students s2

AGGREGATE
MAX(score) GROUP BY(d.major)

DUP_ELIM_SCAN
students d

FILTER
s2.major=d.major

DEPENDENT_JOIN

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Convert the dependent join
operator into a cross product.

46

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

AGGREGATE
MAX(score) GROUP BY(d.major)

FILTER
s2.major=d.major

DEPENDENT_JOIN

SCAN
students s2

DUP_ELIM_SCAN
students d

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Convert the dependent join
operator into a cross product.

46

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

AGGREGATE
MAX(score) GROUP BY(d.major)

FILTER
s2.major=d.major

DEPENDENT_JOIN

SCAN
students s2

DUP_ELIM_SCAN
students d

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Convert the dependent join
operator into a cross product.

46

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

AGGREGATE
MAX(score) GROUP BY(d.major)

FILTER
s2.major=d.major

SCAN
students s2

DUP_ELIM_SCAN
students d

CROSS_JOIN

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Convert the dependent join
operator into a cross product.

Then convert the cross
product into an inner join.

46

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

AGGREGATE
MAX(score) GROUP BY(d.major)

FILTER
s2.major=d.major

SCAN
students s2

DUP_ELIM_SCAN
students d

CROSS_JOIN

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Convert the dependent join
operator into a cross product.

Then convert the cross
product into an inner join.

46

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

FILTER
#0.0 = #1.0

SCAN
students s1

JOIN
s1.major=d.major

AGGREGATE
MAX(score) GROUP BY(d.major)

SCAN
students s2

DUP_ELIM_SCAN
students d

JOIN
d.major=s2.major

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Remove duplicate elimination
scan entirely.

Remove the filter above the
new join.

47

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

SCAN
students s1

FILTER
#0.0 = #1.0

JOIN
s1.major=d.major

AGGREGATE
MAX(score) GROUP BY(d.major)

FILTER
s2.major=d.major

SCAN
students s2

DUP_ELIM_SCAN
students d

JOIN
d.major=s2.major

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Remove duplicate elimination
scan entirely.

Remove the filter above the
new join.

47

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

SCAN
students s1

FILTER
#0.0 = #1.0

JOIN
s1.major=d.major

AGGREGATE
MAX(score) GROUP BY(d.major)

FILTER
s2.major=d.major

SCAN
students s2

DUP_ELIM_SCAN
students d

JOIN
d.major=s2.major

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Remove duplicate elimination
scan entirely.

Remove the filter above the
new join.

47

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

SCAN
students s1

FILTER
#0.0 = #1.0

JOIN
s1.major=d.major

AGGREGATE
MAX(score) GROUP BY(d.major)

SCAN
students s2

AGGREGATE
MAX(score) GROUP BY(major)

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Remove duplicate elimination
scan entirely.

Remove the filter above the
new join.

47

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

SCAN
students s1

FILTER
#0.0 = #1.0

JOIN
s1.major=d.major

AGGREGATE
MAX(score) GROUP BY(d.major)

SCAN
students s2

AGGREGATE
MAX(score) GROUP BY(major)

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

FLATTENING CORRELATED QUERIES

Remove duplicate elimination
scan entirely.

Remove the filter above the
new join.

47

SELECT name, major
 FROM students AS s1
 WHERE score =
 (SELECT MAX(s2.score)
 FROM students AS s2
 WHERE s2.major = s1.major);

PROJECTION
name,major

SCAN
students s1

AGGREGATE
MAX(score) GROUP BY(d.major)

SCAN
students s2

JOIN
s1.major=s2.major AND
s1.score=MAX(score)

AGGREGATE
MAX(score) GROUP BY(major)

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620

15-721 (Spring 2024)

PARTING THOUGHTS

Only HyPer, Umbra, and DuckDB correctly unnest
correlated sub-queries.

All the optimizer strategies we discussed assume
that the optimizer has one shot at choosing a plan.

But what happens if the DBMS discovers that the
cost estimates don't match reality when it starts
processing data?

48

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PARTING THOUGHTS

Only HyPer, Umbra, and DuckDB correctly unnest
correlated sub-queries.

All the optimizer strategies we discussed assume
that the optimizer has one shot at choosing a plan.

But what happens if the DBMS discovers that the
cost estimates don't match reality when it starts
processing data?

48

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

NEXT CLASS

Adaptive Query Optimization

49

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

	Introduction
	Slide 1: Query Optimizer Implementation Part 2
	Slide 2: LAST CLASS
	Slide 3: STRATIFIED SEARCH
	Slide 4: UNIFIED SEARCH
	Slide 5: TOP-DOWN VS. BOTTOM-UP
	Slide 7: TODAY’S AGENDA

	Cascades
	Slide 8: CASCADES OPTIMIZER
	Slide 9: CASCADES: KEY IDEAS
	Slide 10: CASCADES: EXPRESSIONS
	Slide 11: CASCADES: GROUPS
	Slide 12: CASCADES: GROUPS
	Slide 13: CASCADES: MULTI-EXPRESSION
	Slide 14: CASCADES: RULES
	Slide 15: CASCADES: RULES
	Slide 16: CASCADES: MEMO TABLE
	Slide 17: PRINCIPLE OF OPTIMALITY
	Slide 18: CASCADES: MEMO TABLE
	Slide 19: CASCADES: MEMO TABLE
	Slide 20: CASCADES: MEMO TABLE
	Slide 21: CASCADES: MEMO TABLE
	Slide 22: CASCADES: MEMO TABLE
	Slide 23: CASCADES: MEMO TABLE
	Slide 24: CASCADES: MEMO TABLE
	Slide 25: CASCADES: MEMO TABLE
	Slide 26: CASCADES: MEMO TABLE
	Slide 27: CASCADES: MEMO TABLE
	Slide 28: CASCADES: MEMO TABLE
	Slide 29: CASCADES: MEMO TABLE
	Slide 30: CASCADES: MEMO TABLE
	Slide 31: CASCADES IMPLEMENTATIONS

	Randomized
	Slide 32: RANDOMIZED ALGORITHMS
	Slide 33: SIMULATED ANNEALING
	Slide 34: POSTGRES GENETIC OPTIMIZER
	Slide 35: POSTGRES GENETIC OPTIMIZER
	Slide 36: POSTGRES GENETIC OPTIMIZER
	Slide 37: POSTGRES GENETIC OPTIMIZER
	Slide 38: POSTGRES GENETIC OPTIMIZER
	Slide 39: POSTGRES GENETIC OPTIMIZER
	Slide 40: POSTGRES GENETIC OPTIMIZER
	Slide 41: POSTGRES GENETIC OPTIMIZER
	Slide 42: RANDOMIZED ALGORITHMS
	Slide 43: RANDOMIZED ALGORITHMS

	HyPer DP
	Slide 44: DYNAMIC PROGRAMMING OPTIMIZER

	Real-World Implementations
	Slide 45: REAL-WORLD IMPLEMENTATIONS
	Slide 46: MICROSOFT SQL SERVER
	Slide 47: MICROSOFT SQL SERVER
	Slide 48: MICROSOFT SQL SERVER
	Slide 49: APACHE CALCITE
	Slide 50: GREENPLUM ORCA
	Slide 51: GREENPLUM ORCA: ENGINEERING
	Slide 52: COCKROACHDB
	Slide 53: COCKROACHDB

	Sub-Queries
	Slide 56: SUBQUERIES
	Slide 57: SUBQUERIES
	Slide 58: UNCORRELATED SUBQUERY
	Slide 59: CORRELATED SUBQUERY
	Slide 60: CORRELATED SUBQUERY
	Slide 61: CORRELATED SUBQUERY
	Slide 62: CORRELATED SUBQUERY
	Slide 63: CORRELATED SUBQUERY
	Slide 64: CORRELATED SUBQUERY
	Slide 65: CORRELATED SUBQUERY
	Slide 66: CORRELATED SUBQUERY
	Slide 67: CORRELATED SUBQUERY
	Slide 68: CORRELATED SUBQUERY
	Slide 69: CORRELATED SUBQUERY
	Slide 71: HEURISTIC REWRITING
	Slide 72: HEURISTIC REWRITING
	Slide 73: HEURISTIC REWRITING
	Slide 74: HEURISTIC REWRITING

	Unnesting
	Slide 75: GERMAN-STYLE UNNESTING SUBQUERIES
	Slide 76: FLATTENING CORRELATED QUERIES
	Slide 77: FLATTENING CORRELATED QUERIES
	Slide 78: FLATTENING CORRELATED QUERIES
	Slide 79: DEPENDENT JOIN
	Slide 80: FLATTENING CORRELATED QUERIES
	Slide 81: FLATTENING CORRELATED QUERIES
	Slide 82: FLATTENING CORRELATED QUERIES
	Slide 83: FLATTENING CORRELATED QUERIES
	Slide 84: FLATTENING CORRELATED QUERIES
	Slide 85: FLATTENING CORRELATED QUERIES
	Slide 86: FLATTENING CORRELATED QUERIES
	Slide 87: FLATTENING CORRELATED QUERIES
	Slide 88: FLATTENING CORRELATED QUERIES
	Slide 89: FLATTENING CORRELATED QUERIES
	Slide 90: FLATTENING CORRELATED QUERIES
	Slide 91: FLATTENING CORRELATED QUERIES
	Slide 92: FLATTENING CORRELATED QUERIES
	Slide 93: FLATTENING CORRELATED QUERIES
	Slide 94: FLATTENING CORRELATED QUERIES

	Conclusion
	Slide 95: PARTING THOUGHTS
	Slide 96: PARTING THOUGHTS
	Slide 97: NEXT CLASS

