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15-721 (Spring 2024)

LAST CLASS

Choice #1: Heuristics
→ INGRES, Oracle (until mid 1990s)

Choice #2: Heuristics + Cost-based Join Search
→ System R, early IBM DB2, most open-source DBMSs

Choice #3: Stratified Search
→ IBM’s STARBURST (late 1980s), now IBM DB2 + Oracle

Choice #4: Unified Search
→ Volcano/Cascades in 1990s, now MSSQL + Greenplum

Choice #5: Randomized Search
→ Academics in the 1980s, current Postgres
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STRATIFIED SEARCH

First rewrite the logical query plan using 
transformation rules.
→ The engine checks whether the transformation is allowed 

before it can be applied.
→ Cost is never considered in this step.

Then perform a cost-based search to map the logical 
plan to a physical plan.
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UNIFIED SEARCH

Unify the notion of both logical→logical and 
logical→physical transformations.
→ No need for separate stages because everything is 

transformations.

This approach generates many transformations, so 
it makes heavy use of memoization to reduce 
redundant work.

4
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TOP-DOWN VS. BOTTOM-UP

Top-down Optimization
→ Start with the outcome that the query wants, and then 

work down the tree to find the optimal plan that gets you 
to that goal.

→ Examples: Volcano, Cascades

Bottom-up Optimization
→ Start with nothing and then build up the plan to get to the 

outcome that you want.
→ Examples: System R, Starburst
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TODAY’S AGENDA

Unified Search

Randomized Search

Real-World Implementations

Unnesting Subqueries

7
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CASCADES OPTIMIZER

Object-oriented implementation of the previous 
Volcano query optimizer.
→ Top-down approach (backward chaining) using branch-

and-bound search.

Supports expression re-writing through a direct 
mapping function rather than an exhaustive search.

8
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CASCADES: KEY IDEAS

Optimization tasks as data structures.
→ Patterns to match + Transformation Rule to apply

Rules to place property enforcers.
→ Ensures the optimizer generates correct plans.

Ordering of moves by promise.
→ Dynamic task priorities to find optimal plan more quickly.

Predicates as logical/physical operators.
→ Use same pattern/rule engine for expressions.
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CASCADES: EXPRESSIONS

An expression represents some operation in the 
query with zero or more input expressions.
→ Optimizer needs to quickly determine whether two 

expressions are equivalent.

Logical Expression: (A ⨝ B) ⨝ C

Physical Expression: (ASeq ⨝HJ BSeq) ⨝NL CIdx

10

SELECT * FROM A
  JOIN B ON A.id = B.id
  JOIN C ON C.id = A.id;
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CASCADES: GROUPS

A group is a set of logically equivalent logical and 
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from selecting 

the allowable physical operators for the corresponding 
logical forms.

11

Output:
[ABC]

Properties:
None

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
 ⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
 ⋮

G
ro

u
p
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CASCADES: GROUPS

A group is a set of logically equivalent logical and 
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from selecting 

the allowable physical operators for the corresponding 
logical forms.

11

Output:
[ABC]

Properties:
None

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
 ⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
 ⋮

Equivalent
Expressions

G
ro

u
p
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CASCADES: MULTI-EXPRESSION

Instead of explicitly instantiating all possible 
expressions in a group, the optimizer implicitly 
represents redundant expressions in a group as a 
multi-expression.
→ This reduces the number of transformations, storage 

overhead, and repeated cost estimations.

12

Output:
[ABC]

Properties:
None

Logical Multi-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [A]⨝[BC]
 ⋮

Physical Multi-Exps
1. [AB]⨝SM[C]
2. [AB]⨝HJ[C]
3. [AB]⨝NL[C]
4. [BC]⨝SM[A]
 ⋮
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CASCADES: RULES

A rule is a transformation of an expression to a 
logically equivalent expression.
→ Transformation Rule: Logical to Logical
→ Implementation Rule: Logical to Physical

Each rule is represented as a pair of attributes:
→ Pattern: Defines the structure of the logical expression 

that can be applied to the rule.
→ Substitute: Defines the structure of the result after 

applying the rule.

13

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

Pattern

CASCADES: RULES

14

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

Transformation Rule
Rotate Left-to-Right

Implementation Rule
EQJOIN→SORTMERGE

A⨝[BC]

GET(A)

GET(B) GET(C)

B⨝C

[AB]⨝SMC

A⨝SMB

GET(A) GET(B)

GET(C)

[AB]⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan
Group

Logical Expr

Physical Expr
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CASCADES: MEMO TABLE

Stores all previously explored alternatives in a 
compact graph structure / hash table.

Equivalent operator trees and their corresponding 
plans are stored together in groups.

Provides an overview of the optimizer's search 
progress that is used in multiple ways:
→ Transformation Result Memorization
→ Duplicate Group Detection
→ Property + Cost Management.

15
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PRINCIPLE OF OPTIMALITY

Every sub-plan of an optimal plan is itself optimal.

This allows the optimizer to restrict the search 
space to a smaller set of expressions.
→ The optimizer never has to consider a plan containing sub-

plan P1 that has a greater cost than equivalent plan P2 with 
the same physical properties.

16

EXPLOITING UPPER AND LOWER BOUNDS IN 
TOP-DOWN QUERY OPTIMIZATION
IDEAS 2001
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CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]
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CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]
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CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Cost: 10

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10
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CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10
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CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20
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CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20
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CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20
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CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20
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CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

Cost: 50+(10+20)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

[A]⨝HJ[B] 80
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CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Properties:
None

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

[A]⨝HJ[B] 80
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CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Properties:
None

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝HJ[B] 80
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CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Properties:
None

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝HJ[B] 80

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
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CASCADES: MEMO TABLE

17

Output:
[ABC]

Properties:
None

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Properties:
None

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝HJ[B]
3. [B]⨝NL[A]
4. [B]⨝HJ[A]

Output:
[A]

Properties:
None

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Properties:
None

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Properties:
None

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

Cost: 40+(80+5)

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝HJ[B] 80

([A]⨝HJ[B])⨝HJ[C] 125

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

CASCADES IMPLEMENTATIONS

Standalone:
→ Wisconsin OPT++ (1990s)
→ Portland State Columbia (1990s)
→ Greenplum Orca (2010s)
→ Apache Calcite (2010s)

Integrated:
→ Microsoft SQL Server (1990s)
→ Tandem NonStop SQL (1990s)
→ CockroachDB (2010s)

18

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://pages.cs.wisc.edu/~navin/research/apg.html
http://web.cecs.pdx.edu/~len/Columbia/
https://github.com/greenplum-db/gporca
https://calcite.apache.org/
http://www.vldb.org/conf/1996/P592.PDF
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RANDOMIZED ALGORITHMS

Perform a random walk over a solution space of all 
possible (valid) plans for a query.

Continue searching until a cost threshold is reached 
or the optimizer runs for a length of time.

Examples: Postgres’ genetic algorithm.

19

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
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SIMULATED ANNEALING

Start with a query plan that is generated using the 
heuristic-only approach.

Compute random permutations of operators (e.g., 
swap the join order of two tables):
→ Always accept a change that reduces cost.
→ Only accept a change that increases cost with some 

probability.
→ Reject any change that violates correctness (e.g., sort 

ordering).

20

QUERY OPTIMIZATION BY SIMULATED ANNEALING 
SIGMOD 1987

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://dl.acm.org/citation.cfm?id=38722
http://dl.acm.org/citation.cfm?id=38722
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POSTGRES GENETIC OPTIMIZER

More complicated queries use a genetic algorithm 
that selects join orderings (GEQO).

At the beginning of each round, generate different 
variants of the query plan.

Select the plans that have the lowest cost and 
permute them with other plans. Repeat.
→ The mutator function only generates valid plans.

21

Source: Postgres Documentation

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://www.postgresql.org/docs/9.4/static/geqo-pg-intro.html
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POSTGRES GENETIC OPTIMIZER

22

Best:100
1st Generation

R S

T

NL

NL
Cost:
300

T R
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NL

HJ
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HJ

HJ

Cost:
200

Cost:
100
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POSTGRES GENETIC OPTIMIZER
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POSTGRES GENETIC OPTIMIZER
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POSTGRES GENETIC OPTIMIZER

22

Best:100
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POSTGRES GENETIC OPTIMIZER
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POSTGRES GENETIC OPTIMIZER
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POSTGRES GENETIC OPTIMIZER

22

1st Generation 2nd Generation 3rd Generation

…

Best:80

R S

T

NL

NL
Cost:
300

T R

S

NL
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S R

T
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HJ

Cost:
200

Cost:
100

S R

T

HJ

HJ

R T

S

NL

HJ

T R

S
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HJ

Cost:
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Cost:
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T
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R T

S
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HJ

Cost:
90

Cost:
160

Cost:
120

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

RANDOMIZED ALGORITHMS

Advantages:
→ Jumping around the search space randomly allows the 

optimizer to get out of local minimums.
→ Low memory overhead (if no history is kept).

Disadvantages:
→ Difficult to determine why the DBMS may have chosen a 

plan.
→ Must do extra work to ensure that query plans are 

deterministic.
→ Still must implement correctness rules.

23
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https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/XA3SBgcZwtE?t=637
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DYNAMIC PROGRAMMING OPTIMIZER

Model the query as a hypergraph and then 
incrementally expand to enumerate new plans.

Algorithm Overview:
→ Iterate connected sub-graphs and incrementally add new 

edges to other nodes to complete query plan.
→ Use rules to determine which nodes the traversal is allowed 

to visit and expand.

24

DYNAMIC PROGRAMMING STRIKES BACK
SIGMOD 2008

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/p539-moerkotte.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/p539-moerkotte.pdf
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REAL-WORLD IMPLEMENTATIONS

Microsoft SQL Server

Apache Calcite

Greenplum Orca

CockroachDB

SingleStore

Snowflake

25

Cascades

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
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MICROSOFT SQL SERVER

First Cascades implementation started in 1995.
→ Derivatives are used in many MSFT database products.
→ All transformations are written in C++. No DSL.
→ Scalar / expression transformations are written in 

procedural code and not rules.

DBMS applies transformations in multiple stages 
with increasing scope and complexity.
→ The goal is to leverage domain knowledge to apply 

transformations that you always want to do first to reduce 
the search space.

26

https://db.cs.cmu.edu/
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Tree-to-Tree
Transformations

Cost-based Search
Initialization

Multi-Stage
Cost-Based Search

Engine-Specific
Transformations

Sub-Query Removal
Outer Joins to Inner Joins
Predicate Pushdown
Empty Result Pruning

Stage1: Trivial Plan
Stage2: Quick Plan (Parallel)
Stage3: Full Plan (Parallel)

MICROSOFT SQL SERVER

27

Simplification / 
Normalization

Pre-Exploration Exploration Post-Optimization

Trivial Plan Short-circuit
Projection Normalization
Statistics Identification/Collection
Initial Cardinality Estimates
Join Collapsing

Source: Nico Bruno + Cesar Galindo-Legaria

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/pQe1LQJiXN0
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MICROSOFT SQL SERVER

Optimization #1: Timeouts are based on the 
number of transformations not wallclock time.
→ Ensures that overloaded systems do not generate different 

plans than under normal operations.

Optimization #2: Pre-populate the Memo Table 
with potentially useful join orderings.
→ Heuristics that consider relationships between tables.
→ Syntactic appearance in query.

28

https://db.cs.cmu.edu/
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APACHE CALCITE

Standalone extensible query optimization 
framework for data processing systems.
→ Support for pluggable query languages, cost models, and 

rules.
→ Does not distinguish between logical and physical 

operators. Physical properties are provided as annotations.

Originally part of LucidDB.

29

APACHE CALCITE: A FOUNDATIONAL FRAMEWORK FOR OPTIMIZED 
QUERY PROCESSING OVER HETEROGENEOUS DATA SOURCES
SIGMOD 2018

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dbdb.io/db/luciddb
https://dl.acm.org/doi/10.1145/3183713.3190662
https://dl.acm.org/doi/10.1145/3183713.3190662
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GREENPLUM ORCA

Standalone Cascades implementation in C++.
→ Originally written for Greenplum.
→ Extended to support HAWQ.

A DBMS integrates Orca by implementing API to 
send catalog + stats + logical plans and then retrieve 
physical plans.

Supports multi-threaded search.

30

ORCA: A MODULAR QUERY OPTIMIZER 
ARCHITECTURE FOR BIG DATA
SIGMOD 2014

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://greenplum.org/
http://hawq.apache.org/
https://dl.acm.org/doi/10.1145/2588555.2595637
https://dl.acm.org/doi/10.1145/2588555.2595637
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GREENPLUM ORCA: ENGINEERING 

Issue #1: Remote Debugging
→ Automatically dump the state of the optimizer (with 

inputs) whenever an error occurs.
→ The dump is enough to put the optimizer back in the exact 

same state later for further debugging.

Issue #2: Optimizer Accuracy
→ Automatically check whether the ordering of the estimate 

cost of two plans matches their actual execution cost.

31

https://db.cs.cmu.edu/
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COCKROACHDB

Custom Cascades implementation written in 2018.

All transformation rules are written in a custom 
DSL (OptGen) and then codegen into Go-lang.
→ Can embed Go logic in rule to perform more complex 

analysis and modifications.

Also considers scalar expression (predicates) 
transformations together with relational operators.

32

Source:Source: Rebecca Taft

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://github.com/cockroachdb/cockroach/blob/master/pkg/sql/opt/optgen/lang/doc.go
https://youtu.be/wHo-VtzTHx0
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All transformation rules are written in a custom 
DSL (OptGen) and then codegen into Go-lang.
→ Can embed Go logic in rule to perform more complex 

analysis and modifications.

Also considers scalar expression (predicates) 
transformations together with relational operators.
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Source:Source: Rebecca Taft
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https://youtu.be/wHo-VtzTHx0
https://youtu.be/wHo-VtzTHx0


15-721 (Spring 2024)

SUBQUERIES

SQL allows a nested SELECT subquery to exist 
(almost?) anywhere in another query.
→ Projection, FROM, WHERE, LIMIT, HAVING
→ Results of the inner subquery are passed to the outer query.

Such nesting enables more expressive queries 
without having to use separate queries to prepare 
intermediate results.

                                             

35
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SUBQUERIES

SQL allows a nested SELECT subquery to exist 
(almost?) anywhere in another query.
→ Projection, FROM, WHERE, LIMIT, HAVING
→ Results of the inner subquery are passed to the outer query.

Such nesting enables more expressive queries 
without having to use separate queries to prepare 
intermediate results.

Key Distinction: Uncorrelated vs. Correlated

35

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
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UNCORRELATED SUBQUERY

An uncorrelated subquery does 
reference any attributes from the 
(calling) outer query.

The DBMS logically executes it once 
and reuse the result for all tuples in 
the outer query.

36

SELECT name
  FROM students
 WHERE score =
  (SELECT MAX(score) FROM students);

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
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CORRELATED SUBQUERY

A correlated subquery refers to one or 
more attributes from outside of the 
subquery (i.e., the outer query).

The DBMS logically evaluates the 
subquery on each tuple in the outer 
query because the result can change 
per tuple.

37

SELECT name, major
  FROM students AS s1
 WHERE score =
       (SELECT MAX(s2.score)
          FROM students AS s2
         WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score
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more attributes from outside of the 
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per tuple.
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SELECT name, major
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 WHERE score =
       (SELECT MAX(s2.score)
          FROM students AS s2
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CORRELATED SUBQUERY

A correlated subquery refers to one or 
more attributes from outside of the 
subquery (i.e., the outer query).

The DBMS logically evaluates the 
subquery on each tuple in the outer 
query because the result can change 
per tuple.
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SELECT name, major
  FROM students AS s1
 WHERE score =
       (SELECT MAX(s2.score)
          FROM students AS s2
         WHERE s2.major = s1.major);

GZA
RZA
ODB
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Streets
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CORRELATED SUBQUERY

A correlated subquery refers to one or 
more attributes from outside of the 
subquery (i.e., the outer query).

The DBMS logically evaluates the 
subquery on each tuple in the outer 
query because the result can change 
per tuple.

37

SELECT name, major
  FROM students AS s1
 WHERE score =
       (SELECT MAX(s2.score)
          FROM students AS s2
         WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

GZA CompSci
name major

s1.major='CompSci' MAX(s2.score)=90
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CORRELATED SUBQUERY

A correlated subquery refers to one or 
more attributes from outside of the 
subquery (i.e., the outer query).

The DBMS logically evaluates the 
subquery on each tuple in the outer 
query because the result can change 
per tuple.
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CORRELATED SUBQUERY

A correlated subquery refers to one or 
more attributes from outside of the 
subquery (i.e., the outer query).

The DBMS logically evaluates the 
subquery on each tuple in the outer 
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per tuple.
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CORRELATED SUBQUERY

A correlated subquery refers to one or 
more attributes from outside of the 
subquery (i.e., the outer query).

The DBMS logically evaluates the 
subquery on each tuple in the outer 
query because the result can change 
per tuple.
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CORRELATED SUBQUERY

A correlated subquery refers to one or 
more attributes from outside of the 
subquery (i.e., the outer query).

The DBMS logically evaluates the 
subquery on each tuple in the outer 
query because the result can change 
per tuple.
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SELECT name, major
  FROM students AS s1
 WHERE score =
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          FROM students AS s2
         WHERE s2.major = s1.major);
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CORRELATED SUBQUERY

A correlated subquery refers to one or 
more attributes from outside of the 
subquery (i.e., the outer query).

The DBMS logically evaluates the 
subquery on each tuple in the outer 
query because the result can change 
per tuple.
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CORRELATED SUBQUERY

A correlated subquery refers to one or 
more attributes from outside of the 
subquery (i.e., the outer query).

The DBMS logically evaluates the 
subquery on each tuple in the outer 
query because the result can change 
per tuple.

37

SELECT name, major
  FROM students AS s1
 WHERE score =
       (SELECT MAX(s2.score)
          FROM students AS s2
         WHERE s2.major = s1.major);

GZA
RZA
ODB

name
CompSci
CompSci
Streets

major
90
80
100

score

GZA CompSci
ODB Streets

name major

s1.major='Streets' MAX(s2.score)=100

https://db.cs.cmu.edu/
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15-721 (Spring 2024)

HEURISTIC REWRITING

Almost every DBMS that supports 
uses heuristics that identify specific 
query plan patterns to decorrelate 
nested subqueries.

The goal is to move the subquery up a 
level so that the DBMS can execute it 
as a join.

39

ORTHOGONAL OPTIMIZATION OF SUBQUERIES 
AND AGGREGATION
SIGMOD 2001

SELECT name, major
  FROM students AS s1
 WHERE score =
       (SELECT MAX(s2.score)
          FROM students AS s2
         WHERE s2.major = s1.major);

SELECT s1.name, s1.major
  FROM students AS s1
  JOIN (SELECT major,
         MAX(s2.score) AS max_score
         FROM students 
         GROUP BY major) AS s2
    ON s1.major = s2.major
   AND s1.score = s2.max_score
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https://sigmodrecord.org/publications/sigmodRecord/0106/pdfs/Orthogonal%20Optimization%20of%20Subqueries%20and%20Aggregation.pdf
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HEURISTIC REWRITING

Almost every DBMS that supports 
uses heuristics that identify specific 
query plan patterns to decorrelate 
nested subqueries.

The goal is to move the subquery up a 
level so that the DBMS can execute it 
as a join.
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HEURISTIC REWRITING

Advantages:
→ Transformed queries are more efficient.
→ Decision to decorrelate can be a cost-based decision.
→ Easy to control decorrelation by enabling/disabling rules.

Disadvantages:
→ Hard to write rules for all possible correlations scenarios.
→ Changing a small part of a query can make rules ineffective
→ Maintaining transformation rules is a difficult.
→ Handling all edge cases is exceedingly difficult.

40

Source: Mayank Baranwal

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/mayank--baranwal/


15-721 (Spring 2024)

GERMAN-STYLE UNNESTING SUBQUERIES

General-purpose method to eliminate all dependent 
joins by manipulating the query plan until the RHS 
no longer depends on the LHS. 

The optimizer then converts dependent joins to 
regular joins.
→ Some queries switch from a O(n2) nested-loop join to a 

O(n) hash join.

41

UNNESTING ARBITRARY QUERIES 
BTW 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.gi.de/items/137d6917-d8fe-43aa-940b-e27da7c01625
https://dl.gi.de/items/137d6917-d8fe-43aa-940b-e27da7c01625
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FLATTENING CORRELATED QUERIES

Introduce a dependent join 
operator to execute RHS once 
for every tuple in LHS.

42

SELECT name, major
  FROM students AS s1
 WHERE score =
       (SELECT MAX(s2.score)
          FROM students AS s2
         WHERE s2.major = s1.major);

PROJECTION 
name,major

FILTER
#0.0 = SUBQUERY

SCAN
students s1

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=ajpg_pMX620
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Source: Mark Raasveldt
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DEPENDENT JOIN

New dependent join relational algebra operator 
that denotes a correlated subquery.
→ Evaluate RHS of the join for every tuple on the LHS.
→ The operator combine results from every execution and 

return them as its output.

43

DEPENDENT_JOIN 

SCAN
RHS

SCAN
LHS

Source: Mayank Baranwal

L1
L2
L3

id
R1
R2
R3

id

L1
L1
L2

id
R1
R2
R2

id

⋮ ⋮
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FLATTENING CORRELATED QUERIES

Push dependent join down into 
the RHS of the plan.

Only need to execute RHS once 
for every unique combination 
of correlated columns.
→ Duplicate Elimination Scan
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FLATTENING CORRELATED QUERIES

Keeping pushing dependent 
join as far down into the plan as 
is possible.
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FLATTENING CORRELATED QUERIES

Convert the dependent join 
operator into a cross product.
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FLATTENING CORRELATED QUERIES

Remove duplicate elimination 
scan entirely.

Remove the filter above the 
new join.
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PARTING THOUGHTS

Only HyPer, Umbra, and DuckDB correctly unnest 
correlated sub-queries.

All the optimizer strategies we discussed assume 
that the optimizer has one shot at choosing a plan.

But what happens if the DBMS discovers that the 
cost estimates don't match reality when it starts 
processing data?

48
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NEXT CLASS

Adaptive Query Optimization

49
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