
ADVANCED
DATABASE

SYSTEMS

Andy Pavlo
CMU 15-721
Spring 202417

Google
BigQuery /

Dremel

https://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/
https://db.cs.cmu.edu/

15-721 (Spring 2024)

SYSTEMS DISCUSSION

We will spend the rest of the semester discussing
real DBMSs that use the methods that we covered
this semester.

Three goals of this exercise:
→ Learn how to map concepts and ideas from real-world

systems to fundamental techniques.
→ Construct a mental catalog of system design justifications

for different real-world scenarios.
→ Discover that Andy isn't making this stuff up.

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SYSTEMS DISCUSSION

Google BigQuery / Dremel

Databricks Spark SQL / Photon

Snowflake

DuckDB

Yellowbrick

Amazon Redshift

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

REOCCURRING THEMES

Resource Disaggregation

Lack of Statistics

Columnar & Non-Relational Data

Vectorized Execution

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OBSERVATION

In the 2000s, Google had the most influence in
industry trends in development of database systems.

Whenever Google released a research paper
describing an internal system, other tech companies
would write open-source clones.
→ People assumed that whatever Google did was the way it

should be done because they are successful.

5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DATA SYSTEMS AT GOOGLE

MapReduce (2004)

BigTable (2005)

Chubby (2006)

LevelDB (2011)

Megastore (2010)

Vitess (2010)

Dremel (2011)

Spanner (2011)

F1 (2013)

Mesa (2014)

Napa (2021)

6

NoSQL

SQL

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DATA SYSTEMS AT GOOGLE

MapReduce (2004)

BigTable (2005)

Chubby (2006)

LevelDB (2011)

Megastore (2010)

Vitess (2010)

Dremel (2011)

Spanner (2011)

F1 (2013)

Mesa (2014)

Napa (2021)

6

NoSQL

SQL

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DATA SYSTEMS AT GOOGLE

MapReduce (2004)

BigTable (2005)

Chubby (2006)

LevelDB (2011)

Megastore (2010)

Vitess (2010)

Dremel (2011)

Spanner (2011)

F1 (2013)

Mesa (2014)

Napa (2021)

6

Hadoop, Spark

HBase, Accumulo, Hypertable

Zookeeper, etcd

RocksDB

Vitess, Planetscale

Drill, PrestoDB, Impala, Dremio

CockroachDB *, TiDB *

NoSQL

SQL

(*) Only for marketing…

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

GOOGLE DREMEL

Originally developed in 2006 as a side-project for
analyzing data artifacts generated from other tools.
→ The "interactive" goal means that they want to support ad

hoc queries on in-situ data files.
→ Did not support joins in the first version.

Rewritten in the late 2010s to shared-disk
architecture built on top of GFS.

Released as public commercial product (BigQuery)
in 2012.

7

DREMEL: A DECADE OF INTERACTIVE
SQL ANALYSIS AT WEB SCALE
VLDB 2020

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://cloud.google.com/bigquery
https://dl.acm.org/doi/abs/10.14778/3415478.3415568
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

GOOGLE DREMEL

Originally developed in 2006 as a side-project for
analyzing data artifacts generated from other tools.
→ The "interactive" goal means that they want to support ad

hoc queries on in-situ data files.
→ Did not support joins in the first version.

Rewritten in the late 2010s to shared-disk
architecture built on top of GFS.

Released as public commercial product (BigQuery)
in 2012.

7

DREMEL: A DECADE OF INTERACTIVE
SQL ANALYSIS AT WEB SCALE
VLDB 2020

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://cloud.google.com/bigquery
https://dl.acm.org/doi/abs/10.14778/3415478.3415568
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

IN-SITU DATA PROCESSING

Execute queries on data files residing in shared
storage (e.g., object store) in their original format
without first ingesting them into the DBMS (i.e.,
managed storage).
→ This is what people usually mean when they say data lake.
→ A data lakehouse is the DBMS that sits above all this.

The goal is to reduce the amount of prep time
needed to start analyzing data.
→ Users are willing to sacrifice query performance to avoid

having to re-encode / load data files.

8

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

GOOGLE DREMEL

Shared-Disk / Disaggregated Storage

Vectorized Query Processing

Shuffle-based Distributed Query Execution

Columnar Storage
→ Zone Maps / Filters
→ Dictionary + RLE Compression
→ Only Allows "Search" Inverted Indexes

Hash Joins Only

Heuristic Optimizer + Adaptive Optimizations

9

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DREMEL: QUERY EXECUTION

DBMS converts a logical plan into stages
(pipelines) that contain multiple parallel tasks.
→ Each task must be deterministic and idempotent to support

restarts.

Root node (Coordinator) retrieves all the meta-data
for target files in a batch and then embeds it in the
query plan.

Each worker node has its own local memory and
can spill to local disk if needed.

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT language, MAX(views)
 FROM wikipedia
 WHERE title LIKE "%Pavlo%"
 GROUP BY 1 ORDER BY 2 DESC
 LIMIT 100

Stage #1
Partial Group By

DREMEL: QUERY EXECUTION

11

Coordinator

Distributed
File System In-Memory

ShuffleSource: H.Ahmadi + A.Surna

Worker

Worker

Worker

Worker

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Zk5_RcRg3nA

15-721 (Spring 2024)

SELECT language, MAX(views)
 FROM wikipedia
 WHERE title LIKE "%Pavlo%"
 GROUP BY 1 ORDER BY 2 DESC
 LIMIT 100

Stage #1
Partial Group By

Stage #2
Group By, Sort, Limit

DREMEL: QUERY EXECUTION

11

Coordinator

Distributed
File System In-Memory

ShuffleSource: H.Ahmadi + A.Surna

Worker

Worker

Worker

Worker

Worker

Worker

Worker

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Zk5_RcRg3nA

15-721 (Spring 2024)

SELECT language, MAX(views)
 FROM wikipedia
 WHERE title LIKE "%Pavlo%"
 GROUP BY 1 ORDER BY 2 DESC
 LIMIT 100

Stage #1
Partial Group By

Stage #2
Group By, Sort, Limit

DREMEL: QUERY EXECUTION

11

Coordinator

Distributed
File System In-Memory

Shuffle
In-Memory
ShuffleSource: H.Ahmadi + A.Surna

Worker

Worker

Worker

Worker

Worker

Worker

Worker

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Zk5_RcRg3nA

15-721 (Spring 2024)

Stage #1
Partial Group By

Stage #2
Group By, Sort, Limit

Stage #3
Sort, Limit

DREMEL: QUERY EXECUTION

11

Coordinator

Distributed
File System

Distributed
File SystemIn-Memory

Shuffle
In-Memory
Shuffle

Worker

Source: H.Ahmadi + A.Surna

Worker

Worker

Worker

Worker

Worker

Worker

Worker

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Zk5_RcRg3nA

15-721 (Spring 2024)

DREMEL: IN-MEMORY SHUFFLE

Producer/consumer model for transmitting
intermediate results from each stage to the next
using dedicated nodes.
→ Workers send output to shuffle nodes.
→ Shuffle nodes store data in memory in hashed partitions.
→ Workers at the next stage retrieve their inputs from the

shuffle nodes.

Shuffle nodes store this data in memory and only
spill to disk storage if necessary.

12

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DREMEL: IN-MEMORY SHUFFLE

13

Source: H.Ahmadi + A.Surna

Stage n

Distributed
File System

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

hash1(key) % n

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Zk5_RcRg3nA

15-721 (Spring 2024)

DREMEL: IN-MEMORY SHUFFLE

13

Source: H.Ahmadi + A.Surna

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

hash1(key) % n

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Zk5_RcRg3nA

15-721 (Spring 2024)

DREMEL: IN-MEMORY SHUFFLE

The shuffle phases represent checkpoints in a
query's lifecycle where that the coordinator makes
sure that all tasks are completed.

Fault Tolerance / Straggler Avoidance:
→ If a worker does not produce a task's results within a

deadline, the coordinator speculatively executes a
redundant task.

Dynamic Resource Allocation:
→ Scale up / down the number of workers for the next stage

depending size of a stage's output.

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DREMEL: IN-MEMORY SHUFFLE

15

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DREMEL: IN-MEMORY SHUFFLE

15

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DREMEL: IN-MEMORY SHUFFLE

15

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DREMEL: IN-MEMORY SHUFFLE

15

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DREMEL: IN-MEMORY SHUFFLE

15

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer
Statistics

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DREMEL: IN-MEMORY SHUFFLE

15

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer
Statistics

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

OBSERVATION

We discussed how query optimizers rely on cost
models derived from statistics extracted from data.

But how can the DBMS optimize a query if there
are no statistics?
→ Data files the DBMS has never seen before.
→ Query APIs from other DBMSs (connectors).

16

DREMEL: A DECADE OF INTERACTIVE
SQL ANALYSIS AT WEB SCALE
VLDB 2020

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.14778/3415478.3415568
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

15-721 (Spring 2024)

DREMEL: QUERY OPTIMIZATION

Dremel's optimizer uses a stratified approach with
rule-based + cost-based optimizer passes to generate
a preliminary physical plan to start execution.
→ Rules for predicate pushdown, star schema constraint

propagation, primary/foreign key hints, join ordering.
→ Cost-based optimizations only on data that the DBMS has

statistics available (e.g., materialized views).

To avoid the problems with bad cost model
estimates, Dremel uses adaptive query
optimization…

17

Source: H.Ahmadi + A.Surna

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Zk5_RcRg3nA

15-721 (Spring 2024)

DREMEL: ADAPTIVE QUERY OPTIMIZATION

Dremel changes the query plan before a stages starts
based on observations from the preceding stage.
→ Avoids the problem of optimizer making decisions with

inaccurate (or non-existing) data statistics.

Optimization Examples:
→ Change the # of workers in a stage.
→ Switch between shuffle vs. broadcast join.
→ Change the physical operator implementation.
→ Dynamic repartitioning.

18

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DREMEL: ADAPTIVE JOIN

19

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Stage n

Table A

Table B

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DREMEL: ADAPTIVE JOIN

19

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Stage n

Table A

Table B

Table A Table B

Table A Table B

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DREMEL: ADAPTIVE JOIN

19

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Stage n

Table A

Table B

Table A Table B

Table A Table B

hash(A.key)

hash(A.key)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DREMEL: ADAPTIVE JOIN

19

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Stage n

Table A

Table B

Table A Table B

Table A Table B

Broadcast(A)

Broadcast(A)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DREMEL: DYNAMIC REPARTITIONING

Dremel dynamically load balances and
adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

20

WorkerWorker

Partition #1

Coordinator

Source: H.Ahmadi + A.Surna

Partition #2

hash1(key)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Zk5_RcRg3nA

15-721 (Spring 2024)

DREMEL: DYNAMIC REPARTITIONING

Dremel dynamically load balances and
adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

20

WorkerWorker

Partition #1

Coordinator

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Zk5_RcRg3nA

15-721 (Spring 2024)

DREMEL: DYNAMIC REPARTITIONING

Dremel dynamically load balances and
adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

20

WorkerWorker

Partition #1 Partition #3 Partition #4

Coordinator

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Zk5_RcRg3nA

15-721 (Spring 2024)

DREMEL: DYNAMIC REPARTITIONING

Dremel dynamically load balances and
adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

20

WorkerWorker

Partition #1 Partition #3 Partition #4

Coordinator

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key) hash2(key)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Zk5_RcRg3nA

15-721 (Spring 2024)

DREMEL: DYNAMIC REPARTITIONING

Dremel dynamically load balances and
adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

20

WorkerWorker

Partition #1 Partition #3 Partition #4

Coordinator

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key) hash2(key)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Zk5_RcRg3nA

15-721 (Spring 2024)

DREMEL: DYNAMIC REPARTITIONING

Dremel dynamically load balances and
adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

20

WorkerWorker Repartition

Partition #1 Partition #3 Partition #4

Coordinator

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key) hash2(key)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Zk5_RcRg3nA

15-721 (Spring 2024)

DREMEL: DYNAMIC REPARTITIONING

Dremel dynamically load balances and
adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

20

WorkerWorker Repartition

Partition #1 Partition #3 Partition #4

Coordinator

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key) hash2(key)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Zk5_RcRg3nA

15-721 (Spring 2024)

DREMEL: DYNAMIC REPARTITIONING

Dremel dynamically load balances and
adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

20

WorkerWorker Repartition

Partition #1 Partition #3 Partition #4

Coordinator

Source: H.Ahmadi + A.Surna

Statistics

hash1(key) hash2(key)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Zk5_RcRg3nA

15-721 (Spring 2024)

DREMEL: STORAGE

DBMS relies on Google's distributed file system
(Colossus) to scale out storage capacity.

Relies on Capacitor's columnar encoding scheme
for nested relational and semi-structured data.
→ Think of it as JSON/YAML without the slowness.
→ Capacitor also provides access libraries with basic filtering.
→ Similar to Parquet vs. ORC formats.

Repetition and definition fields are embedded in
columns to avoid having to retrieve/access ancestor
attributes.

21

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/bigquery/inside-capacitor-bigquerys-next-generation-columnar-storage-format

15-721 (Spring 2024)

DREMEL: SCHEMA REPRESENTATION

Dremel's internal storage format is self-describing
→ Everything the DBMS needs to understand what is in a file

is contain within the file.

But the DBMS must parse a file's embedded schema
whenever it wants to read that a file.
→ Tables can have thousands of attributes. Most queries only

need a subset of attributes.

DBMS stores schemas in a columnar format to
reduce overhead when retrieving meta-data.

22

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DREMEL: SQL

In the early 2010s, many of Google's internal DBMS
projects each had their own SQL dialect.

The GoogleSQL project unified these redundant
efforts to build a data model, type system, syntax,
semantics, and function library.

(Zombie?) Open-Source Version: ZetaSQL

23

SPANNER: BECOMING A SQL SYSTEM
SIGMOD 2017

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://cloud.google.com/spanner/docs/reference/standard-sql/overview
https://github.com/google/zetasql
https://dl.acm.org/doi/10.1145/3035918.3056103
https://dl.acm.org/doi/10.1145/3035918.3056103

15-721 (Spring 2024)

OBSERVATION

Since the 2011 VLDB paper, there are DBMS
projects that are copies or inspired by Dremel.
→ Apache Drill (MapR)
→ Presto (Meta)
→ Apache Impala (Cloudera)
→ Dremio

There are also shuffle-as-a-service systems:
→ Apache Celeborn (Alibaba)
→ Apache Uniffle (Tencent)
→ Remote Shuffle Service (Uber)

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://drill.apache.org/
https://prestodb.io/
https://impala.apache.org/
https://www.dremio.com/
https://celeborn.apache.org/
https://uniffle.apache.org/
https://github.com/uber/RemoteShuffleService

15-721 (Spring 2024)

APACHE DRILL

Drill is an open-source implementation of
Dremel built on top of Hadoop.
→ Project started in 2012 at MapR.

Supports query codegen via Janino embedded Java
compiler.

HPE announced in 2020 that they will no longer
support Drill development.

25

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
http://janino-compiler.github.io/janino/

15-721 (Spring 2024)

PRESTODB

Started at Facebook in 2012 to replace
Apache Hive query engine based on Hadoop.
→ Java-based execution engine for data lakes.
→ Many connectors to different storage systems and DBMSs.
→ Replace PrestoDB's Java-based runtime engine with Velox-

based engine called Prestissimo.

Hard-forked in 2019 by Starburst Data into
Trino (formerly PrestoSQL) because Meta
would not give up control of source code.

26

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://hive.apache.org/
https://trino.io/

15-721 (Spring 2024)

PRESTODB

Started at Facebook in 2012 to replace
Apache Hive query engine based on Hadoop.
→ Java-based execution engine for data lakes.
→ Many connectors to different storage systems and DBMSs.
→ Replace PrestoDB's Java-based runtime engine with Velox-

based engine called Prestissimo.

Hard-forked in 2019 by Starburst Data into
Trino (formerly PrestoSQL) because Meta
would not give up control of source code.

26

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://hive.apache.org/
https://trino.io/
https://trino.io/episodes/36.html#question-of-the-episode-will-trino-be-making-a-vectorized-c-version-of-trino-workers

15-721 (Spring 2024)

APACHE IMPALA

Impala is another Dremel inspired DBMS for
executing queries on distributed filesystems.
→ Started in 2012 at Cloudera by ex-Google DB people.

Supports codegen of filters and parsing logic.

Co-locate executor component on each data node to
provide parsing and predicate pushdown.

27

Worker

Distributed
File System

Executor

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DREMIO

Open-source / commercial DBMS inspired
by Dremel based on Apache Arrow.
→ Started in 2015 by CMU alum.

Leverages user-defined materialized views
("reflections") to speed up query execution on
external data files.

Also relies on Java-based codegen and vectorization.

28

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/tshiran
https://docs.dremio.com/software/reflections/

15-721 (Spring 2024)

APACHE CELEBORN

Standalone shuffle-as-a-service system written
in Java that replaces the built-in shuffle
mechanisms of Spark + Flink.
→ Decouples shuffle operation from workers.

Maintains its own buffer pool with support for
block compression, and spilling data to local disks
and HDFS.

29

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PARTING THOUGHTS

Dremel is an innovative DBMS that predates all
other major cloud-native OLAP DBMSs.

The shuffle phase seems wasteful but it simplifies
engineering and can improve performance.

It is also a good example of the benefit of
decomposing a DBMS's components into individual
services to abstract raw resources.

30

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PARTING THOUGHTS

Dremel is an innovative DBMS that predates all
other major cloud-native OLAP DBMSs.

The shuffle phase seems wasteful but it simplifies
engineering and can improve performance.

It is also a good example of the benefit of
decomposing a DBMS's components into individual
services to abstract raw resources.

30

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

NEXT CLASS

Spark SQL / Photon Engine

31

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

	Introduction
	Slide 1: Google BigQuery / Dremel
	Slide 2: SYSTEMS DISCUSSION
	Slide 3: SYSTEMS DISCUSSION
	Slide 4: REOCCURRING THEMES

	History
	Slide 5: OBSERVATION
	Slide 6: DATA SYSTEMS AT GOOGLE
	Slide 7: DATA SYSTEMS AT GOOGLE
	Slide 8: DATA SYSTEMS AT GOOGLE

	Architecture
	Slide 9: GOOGLE DREMEL
	Slide 10: GOOGLE DREMEL
	Slide 11: IN-SITU DATA PROCESSING
	Slide 12: GOOGLE DREMEL
	Slide 13: DREMEL: QUERY EXECUTION
	Slide 14: DREMEL: QUERY EXECUTION
	Slide 15: DREMEL: QUERY EXECUTION
	Slide 16: DREMEL: QUERY EXECUTION
	Slide 17: DREMEL: QUERY EXECUTION

	Shuffle
	Slide 18: DREMEL: IN-MEMORY SHUFFLE
	Slide 19: DREMEL: IN-MEMORY SHUFFLE
	Slide 20: DREMEL: IN-MEMORY SHUFFLE
	Slide 21: DREMEL: IN-MEMORY SHUFFLE
	Slide 22: DREMEL: IN-MEMORY SHUFFLE
	Slide 23: DREMEL: IN-MEMORY SHUFFLE
	Slide 24: DREMEL: IN-MEMORY SHUFFLE
	Slide 25: DREMEL: IN-MEMORY SHUFFLE
	Slide 26: DREMEL: IN-MEMORY SHUFFLE
	Slide 27: DREMEL: IN-MEMORY SHUFFLE

	Query Optimization
	Slide 28: OBSERVATION
	Slide 29: DREMEL: QUERY OPTIMIZATION
	Slide 30: DREMEL: ADAPTIVE QUERY OPTIMIZATION
	Slide 31: DREMEL: ADAPTIVE JOIN
	Slide 32: DREMEL: ADAPTIVE JOIN
	Slide 33: DREMEL: ADAPTIVE JOIN
	Slide 34: DREMEL: ADAPTIVE JOIN
	Slide 35: DREMEL: DYNAMIC REPARTITIONING
	Slide 36: DREMEL: DYNAMIC REPARTITIONING
	Slide 37: DREMEL: DYNAMIC REPARTITIONING
	Slide 38: DREMEL: DYNAMIC REPARTITIONING
	Slide 39: DREMEL: DYNAMIC REPARTITIONING
	Slide 40: DREMEL: DYNAMIC REPARTITIONING
	Slide 41: DREMEL: DYNAMIC REPARTITIONING
	Slide 42: DREMEL: DYNAMIC REPARTITIONING

	Storage Format
	Slide 43: DREMEL: STORAGE
	Slide 44: DREMEL: SCHEMA REPRESENTATION

	SQL
	Slide 45: DREMEL: SQL

	Other Systems
	Slide 46: OBSERVATION
	Slide 47: APACHE DRILL
	Slide 48: PRESTODB
	Slide 49: PRESTODB
	Slide 50: APACHE IMPALA
	Slide 51: DREMIO
	Slide 52: APACHE CELEBORN

	Conclusion
	Slide 53: PARTING THOUGHTS
	Slide 54: PARTING THOUGHTS
	Slide 55: NEXT CLASS

