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15-721 (Spring 2024)

SYSTEMS DISCUSSION

We will spend the rest of the semester discussing 
real DBMSs that use the methods that we covered 
this semester.

Three goals of this exercise:
→ Learn how to map concepts and ideas from real-world 

systems to fundamental techniques.
→ Construct a mental catalog of system design justifications 

for different real-world scenarios.
→ Discover that Andy isn't making this stuff up.
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SYSTEMS DISCUSSION

Google BigQuery / Dremel

Databricks Spark SQL / Photon

Snowflake

DuckDB

Yellowbrick

Amazon Redshift
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REOCCURRING THEMES

Resource Disaggregation

Lack of Statistics

Columnar & Non-Relational Data

Vectorized Execution
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OBSERVATION

In the 2000s, Google had the most influence in 
industry trends in development of database systems.

Whenever Google released a research paper 
describing an internal system, other tech companies 
would write open-source clones.
→ People assumed that whatever Google did was the way it 

should be done because they are successful.
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DATA SYSTEMS AT GOOGLE

MapReduce (2004)

BigTable (2005)

Chubby (2006)

LevelDB (2011)

Megastore (2010)

Vitess (2010)

Dremel (2011)

Spanner (2011)

F1 (2013)

Mesa (2014)

Napa (2021)
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Hadoop, Spark

HBase, Accumulo, Hypertable

Zookeeper, etcd

RocksDB

Vitess, Planetscale

Drill, PrestoDB, Impala, Dremio

CockroachDB *, TiDB *

NoSQL

SQL

(*) Only for marketing…
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GOOGLE DREMEL

Originally developed in 2006 as a side-project for 
analyzing data artifacts generated from other tools.
→ The "interactive" goal means that they want to support ad 

hoc queries on in-situ data files.
→ Did not support joins in the first version.

Rewritten in the late 2010s to shared-disk 
architecture built on top of GFS.

Released as public commercial product (BigQuery) 
in 2012.
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IN-SITU DATA PROCESSING

Execute queries on data files residing in shared 
storage (e.g., object store) in their original format 
without first ingesting them into the DBMS (i.e., 
managed storage).
→ This is what people usually mean when they say data lake.
→ A data lakehouse is the DBMS that sits above all this.

The goal is to reduce the amount of prep time 
needed to start analyzing data.
→ Users are willing to sacrifice query performance to avoid 

having to re-encode / load data files.
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GOOGLE DREMEL

Shared-Disk / Disaggregated Storage

Vectorized Query Processing

Shuffle-based Distributed Query Execution

Columnar Storage
→ Zone Maps / Filters
→ Dictionary + RLE Compression
→ Only Allows "Search" Inverted Indexes

Hash Joins Only

Heuristic Optimizer + Adaptive Optimizations
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DREMEL: QUERY EXECUTION

DBMS converts a logical plan into stages 
(pipelines) that contain multiple parallel tasks.
→ Each task must be deterministic and idempotent to support 

restarts.

Root node (Coordinator) retrieves all the meta-data 
for target files in a batch and then embeds it in the 
query plan.

Each worker node has its own local memory and 
can spill to local disk if needed.
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SELECT language, MAX(views)
  FROM wikipedia
 WHERE title LIKE "%Pavlo%"
 GROUP BY 1 ORDER BY 2 DESC
 LIMIT 100

Stage #1
Partial Group By

DREMEL: QUERY EXECUTION

11

Coordinator

Distributed
File System In-Memory

ShuffleSource: H.Ahmadi + A.Surna

Worker

Worker

Worker

Worker
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Stage #1
Partial Group By

Stage #2
Group By, Sort, Limit

Stage #3
Sort, Limit

DREMEL: QUERY EXECUTION
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DREMEL: IN-MEMORY SHUFFLE

Producer/consumer model for transmitting 
intermediate results from each stage to the next 
using dedicated nodes.
→ Workers send output to shuffle nodes.
→ Shuffle nodes store data in memory in hashed partitions.
→ Workers at the next stage retrieve their inputs from the 

shuffle nodes.

Shuffle nodes store this data in memory and only 
spill to disk storage if necessary.
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DREMEL: IN-MEMORY SHUFFLE
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DREMEL: IN-MEMORY SHUFFLE
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DREMEL: IN-MEMORY SHUFFLE

The shuffle phases represent checkpoints in a 
query's lifecycle where that the coordinator makes 
sure that all tasks are completed.

Fault Tolerance / Straggler Avoidance:
→ If a worker does not produce a task's results within a 

deadline, the coordinator speculatively executes a 
redundant task.

Dynamic Resource Allocation:
→ Scale up / down the number of workers for the next stage 

depending size of a stage's output.
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DREMEL: IN-MEMORY SHUFFLE
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DREMEL: IN-MEMORY SHUFFLE
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DREMEL: IN-MEMORY SHUFFLE
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DREMEL: IN-MEMORY SHUFFLE
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DREMEL: IN-MEMORY SHUFFLE
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DREMEL: IN-MEMORY SHUFFLE
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OBSERVATION

We discussed how query optimizers rely on cost 
models derived from statistics extracted from data.

But how can the DBMS optimize a query if there 
are no statistics?
→ Data files the DBMS has never seen before.
→ Query APIs from other DBMSs (connectors).
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DREMEL: QUERY OPTIMIZATION

Dremel's optimizer uses a stratified approach with 
rule-based + cost-based optimizer passes to generate 
a preliminary physical plan to start execution.
→ Rules for predicate pushdown, star schema constraint 

propagation, primary/foreign key hints, join ordering.
→ Cost-based optimizations only on data that the DBMS has 

statistics available (e.g., materialized views).

To avoid the problems with bad cost model 
estimates, Dremel uses adaptive query 
optimization…
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DREMEL: ADAPTIVE QUERY OPTIMIZATION

Dremel changes the query plan before a stages starts 
based on observations from the preceding stage. 
→ Avoids the problem of optimizer making decisions with 

inaccurate (or non-existing) data statistics.

Optimization Examples:
→ Change the # of workers in a stage.
→ Switch between shuffle vs. broadcast join.
→ Change the physical operator implementation.
→ Dynamic repartitioning.
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DREMEL: ADAPTIVE JOIN
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DREMEL: ADAPTIVE JOIN

19

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Stage n

Table A

Table B

Table A Table B

Table A Table B

hash(A.key)

hash(A.key)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

DREMEL: ADAPTIVE JOIN
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DREMEL: DYNAMIC REPARTITIONING

Dremel dynamically load balances and 
adjusts intermediate result 
partitioning to adapt to data skew.

DBMS detects whether shuffle 
partition gets too full and then 
instructs workers to adjust their 
partitioning scheme.

20
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partition gets too full and then 
instructs workers to adjust their 
partitioning scheme.
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DREMEL: STORAGE

DBMS relies on Google's distributed file system 
(Colossus) to scale out storage capacity.

Relies on Capacitor's columnar encoding scheme 
for nested relational and semi-structured data.
→ Think of it as JSON/YAML without the slowness.
→ Capacitor also provides access libraries with basic filtering.
→ Similar to Parquet vs. ORC formats.

Repetition and definition fields are embedded in 
columns to avoid having to retrieve/access ancestor 
attributes.
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DREMEL: SCHEMA REPRESENTATION

Dremel's internal storage format is self-describing
→ Everything the DBMS needs to understand what is in a file 

is contain within the file.

But the DBMS must parse a file's embedded schema 
whenever it wants to read that a file.
→ Tables can have thousands of attributes. Most queries only 

need a subset of attributes.

DBMS stores schemas in a columnar format to 
reduce overhead when retrieving meta-data.
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DREMEL: SQL

In the early 2010s, many of Google's internal DBMS 
projects each had their own SQL dialect.

The GoogleSQL project unified these redundant 
efforts to build a data model, type system, syntax, 
semantics, and function library.

(Zombie?) Open-Source Version: ZetaSQL
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OBSERVATION

Since the 2011 VLDB paper, there are DBMS 
projects that are copies or inspired by Dremel.
→ Apache Drill (MapR)
→ Presto (Meta)
→ Apache Impala (Cloudera)
→ Dremio

There are also shuffle-as-a-service systems:
→ Apache Celeborn (Alibaba)
→ Apache Uniffle (Tencent)
→ Remote Shuffle Service (Uber)
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APACHE DRILL

Drill is an open-source implementation of
Dremel built on top of Hadoop.
→ Project started in 2012 at MapR.

Supports query codegen via Janino embedded Java 
compiler.

HPE announced in 2020 that they will no longer 
support Drill development.
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PRESTODB

Started at Facebook in 2012 to replace
Apache Hive query engine based on Hadoop.
→ Java-based execution engine for data lakes.
→ Many connectors to different storage systems and DBMSs.
→ Replace PrestoDB's Java-based runtime engine with Velox-

based engine called Prestissimo.

Hard-forked in 2019 by Starburst Data into
Trino (formerly PrestoSQL) because Meta
would not give up control of source code.
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APACHE IMPALA

Impala is another Dremel inspired DBMS for 
executing queries on distributed filesystems.
→ Started in 2012 at Cloudera by ex-Google DB people.

Supports codegen of filters and parsing logic.

Co-locate executor component on each data node to 
provide parsing and predicate pushdown.
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DREMIO

Open-source / commercial DBMS inspired
by Dremel based on Apache Arrow.
→ Started in 2015 by CMU alum.

Leverages user-defined materialized views 
("reflections") to speed up query execution on 
external data files.

Also relies on Java-based codegen and vectorization.
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APACHE CELEBORN

Standalone shuffle-as-a-service system written
in Java that replaces the built-in shuffle
mechanisms of Spark + Flink.
→ Decouples shuffle operation from workers.

Maintains its own buffer pool with support for 
block compression, and spilling data to local disks 
and HDFS.
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PARTING THOUGHTS

Dremel is an innovative DBMS that predates all 
other major cloud-native OLAP DBMSs.

The shuffle phase seems wasteful but it simplifies 
engineering and can improve performance.

It is also a good example of the benefit of 
decomposing a DBMS's components into individual 
services to abstract raw resources.

30
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NEXT CLASS

Spark SQL / Photon Engine
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