ADVANCED (@ o

DATABASE o g
SYSTEMS b o8

Databricks
Photon /
Spark SQL

Andy Pavlo Carnegie
1 8 cMU 15-721 Mellon
Spring 2024 University

https://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/
https://db.cs.cmu.edu/

LAST CLASS

Google Dremel is the foundation system
architecture for many modern OLAP systems.

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

ADVENT OF SPARK

High-performance and more expressive

replacement for Hadoop from Berkeley.

— Separate compute / storage

— Support for iterative algorithms that make multiple passes
on the same data set.

Written in Scala (the hot language in 2010),
meaning that it ran on the JVM.

Originally only supported a low-level RDD API.
Added DataFrame API for higher-level abstraction.

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Pandas_(software)#DataFrames

SHARK (2013)

Modified version of Facebook's Hive middleware
that converted SQL into Spark API programs.

Only supported SQL on data files registered in

Hive's catalog. Spark programs could not execute
SQL in between API calls.

Shark relied on the Hive query optimizer that was

designed for running map-reduce jobs on Hadoop.
— Spark has a more feature-rich native API.

SHARK: SQL AND RICH ANALYTICS AT SCALE

SIGMOD 2013

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/10.1145/2463676.2465288
https://dl.acm.org/doi/10.1145/2463676.2465288

SPARK SQL (2015)

Row-based SQL engine natively inside of the Spark

runtime with Scala-based query codegen.

— In-memory columnar representation for intermediate
results as raw byte buffers.

— Dictionary encoding, RLE, bitpacking compressions.

— In-memory shuffle between query stages.

DBMS converts a query's WHERE clause expression
trees into Scala ASTs. It then compiles these AST's
to generate JVM bytecode.

~— |SPARK SQL: RELATIONAL DATA
PROCESSING IN SPARK
SIGMOD 2015

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/10.1145/2723372.2742797
https://dl.acm.org/doi/10.1145/2723372.2742797

SPARK SQL (2015)

Row-based SQL engine natively inside of the Spark

runtime with Scala-base
H —
In-memory columnar rep y il emain it 1 12P OU°
results as raw byte buffers, exia sysiem catls s 1} praciice,
— Dictionary encoding, RLE head. In addition, the ingpipor 0 m2lin
Y g; » the l_naf?lllty to control when buffer caches are

— In- : - .
In memory shuffle betweq is determined by the last task to finish, and thus the jn i
’ : creasing vari-

ability leads to lon i
n g-tail latency, which sjop;
fe - > 1Ch significant]
performance. We modified the shuffle phase tonm{a,t:nq;tl? e

DBMS converts a query/|_ P! in memory, with the option to spill them g 41
trees into Scala ASTs. It then compiles theSEe ASTS

to generate JVM bytecode.

ze map

- |SPARK SQL: RELATIONAL DATA
PROCESSING IN SPARK
SIGMOD 2015

£CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/10.1145/2723372.2742797
https://dl.acm.org/doi/10.1145/2723372.2742797

JVM PROBLEMS

Databricks' workloads were becoming CPU bound.

— Fewer disk stalls because of NVMe SSD caching and
adaptive shuffling.

— Better filtering to skip reading data

They found it difficult to optimize their JVM-based

Spark SQL execution engine further:
— GC slowdown for heaps larger than 64GB
— JIT codegen limitations for large methods

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

DATABRICKS PHOTON (2622)

Single-threaded C++ execution engine embedded
into Databricks Runtime (DBR) via JNI.

— Overrides existing engine when appropriate.

— Support both Spark's earlier SQL engine and Spark's
DataFrame API.

— Seamlessly handle impedance mismatch between row-
oriented DBR and column-oriented Photon.

Accelerate execution of query plans over "raw /
uncurated” files in a data lake.

PHOTON: A FAST QUERY ENGINE
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054

DATABRICKS PHOTON (2622)

Photon: A Fast Query Engine for Lakehouse Systems

Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David Cashman, Ankur
Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson, Arvind Sai Krishnan, Paul Leventis, Ala
Luszczak, Prashanth Menon, Mostafa Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart

Samwel, Tom van Bussel, Herman van Hovell, Maryann Xue, Reynold Xin, Matei Zaharia
photon-paper-authors@databricks.com
Databricks Inc.

ABSTRACT from SQL to machine learning. Traditionally, for the most demand-
Many organizations are shifting to a data management paradigm ing SQL workloads, enterprises have also moved a curated subset
called the “Lakehouse,” which implements the functionality of struc- of their data into data warehouses to get high performance, gov-
tiired data wareholices An tan of unctructired data lakec Thig ernance and Concurrency. HOWCVCI', thlS two—tier arChiteCture iS

PHOTON: A FAST QUERY ENGINE
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022

££CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054
https://twitter.com/andy_pavlo/status/1536843474925981697

DATABRICKS PHOTON

Shared-Disk / Disaggregated Storage

Pull-based Vectorized Query Processing

Precompiled Primitives + Expression Fusion
Shuffle-based Distributed Query Execution
Sort-Merge + Hash Joins

Unified Query Optimizer + Adaptive Optimizations

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

SPARK: QUERY EXECUTION

Driver SELECT language, MAX(views)
\ FROM wikipedia
WHERE title LIKE "%Pavlo%"

GROUP BY 1 ORDER BY 2 DESC
LIMIT 100

(0 (@ [[@

Distributed
File System

£CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

(0 (@ [[@

Distributed
File System

SPARK: QUERY EXECUTION

Stage #1
Partial Group By

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

SPARK: QUERY EXECUTION

Local In-Memory
. Shuffle Store

(0 (@ [[@

D?Strlbuted Partfi?(g}ioilp By
File System
APACHE
Celeborn
£CMU-DB

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

SPARK: QUERY EXECUTION

Executor [

DOOO®
i

Stage #1 Stage #2
Partial Group By Group By, Sort, Limit

Distributed
File System

APACHE

C eleborn

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

(0 (@ [[@

Distributed
File System

SPARK: QUERY EXECUTION

Stage #1 Stage #2 Stage #3
Partial Group By Group By, Sort, Limit Sort, Limit

APACHE

C eleborn

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

PHOTON: VECTORIZED QUERY PROCESSING

Photon is a pull-based vectorized engine that uses

precompiled operator kernels (primitives).
— Converts physical plan into a list of pointers to functions
that perform low-level operations on column batches.

Databricks: It is easier to build/maintain a

vectorized engine than a JIT engine.

— Engineers spend more time creating specialized codepaths
to get closer to JIT performance.

— With codegen, engineers write tooling and observability
hooks instead of writing the engine.

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNext invocation on a Photon operator

produces a column batch.
— One or more column vectors with a position list vector.
— Each column vector includes a null bitmap.

Databricks: Position list vectors performs better
than "active row" bitmap despite indirection.

col0: int32 coll: varchar position list

55 0 aa 0 4/- 1
<—’)(,—— 3

66 bbb

[Y Fos)

_Column Batch

£CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNext invocation on a Photon operator

produces a column batch.
— One or more column vectors with a position list vector.
— Each column vector includes a null bitmap.

Databricks: Position list vectors performs better
than "active row" bitmap despite indirection.

active rows = . col0: int32 coll: varchar position list

=g

set S

0 —>{ 55 || © aa || o 1
(3

1 = 66 |[o e I

0 S— 77 [0 - [/

1 S -

S2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNext invocation on a Photon operator

produces a colum
— One or more colu
— Each column vect

Databricks: Positi

active rows col0: int32 coll: varchar position list
set
b o4 55 || e aa || @ 1

>
A
[1 F

-
» 66 |[o bbb || o o 3
> 77 0 - 1 /
> - 1 - 1

_CplymniBatch

££CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

Filter Representation in Vectorized Query Execution

Amadou Ngom®, Prashanth Menon
Matthew Butrovich, Lin Ma, Wan Shen Lim, Todd C. Mowry. Andrew Pavlo
*)Massachusetts [nstitute of Technology. Carnegie Mellon University

{ngom@mit edu,pmenon(

Abstract

Advances in memory Lechnology have made it feasible for database
management systems (DBMS) to store Iheir working data set in
pmain memory. This trend shifts {he boltleneck for query execution
from disk accesses 1o CPU efficiency. One terhnique to improve
CPU efficiency Is Batch-oriented processing, ot vectorization, as it
reduces interpretation overhead For each vector {bateh) of tuples,
e DBMS musl tack the srlul'\.-ahd(mblr) tuples that survive all
previous proc sing steps. To that end, existing sy stems employ one
of bwo data structures, o filter representations: selection veclors
o bitmaps. T this work, we analyze each approach’s strengths

and weaknesses and offer recommendations o how 1o implement
vertorized uprralmm.ﬂuuu;_{h a wide range of micro-bend
we determine that the aptimal sirategy isa function of mavy factors:
the cost of iterating through tples, the cost of the operation itself,
and how amenable It is to SIMD vec {orization. Out analysis shows
Ihiat bitmaps perform better for operations that can be vectorized
using 5IMD instructions and that selection vertors perforin betier
on all other operations due 1o cheaper iteration logie

ACM Reference Format:

Amadon Ngont*, Prashanth Meaarn ond Matthew Buiavich, Lin Ma, Wan
Shen Lim, Todd C. Mowry. Andrew Pavlo . 2021 Filler Representation in
Vertarized Query Execntion.In International Wivkshopen Data Management
o New Hardware (DAMON21), June 20 25, 2021, Virtual Event, China. ACM.
New York, NY, USA, 7 pages. hitps/doi org/10. 11454465995, 3466007

1 Introduction

Modern DBMSs utilize {he vectotized processing model pioneered
by Vectorwise [17] to improve query execution performance. in
Lhis model, relational eperlots implement & uniform intetdace 0
fterate over its resuls ina Volcano-style manner [3]. However, un-
likce the original Volcano model, in a vectorized engine, relational
operators exchange smmall vectors of typicaly 1 plctuples in each in-
vication of the iteraior This simple enhancement {1) amortizes the
iteration ovethead across all tuples in the vector and (2) maximizes
computation on Luple data while its in \he CPU's eache.
Veclorized relational operators exchange batches of Luple where
each tuple attribute is stoved separately ina compact vector. For
instance, a filter operator applies a predicate or each input tuple
and copies L5 aitributes into an putpul vecter if successful. This

This vork i3 Ticensed undiera Creative Commaons Atribution Intersations] 3.0 License:
e 20-25, 202 L, Virtual Event, Ching
author{sk

s crmu.edu}

pparsal Sanual — BMFulManual

0.0 02 04 0.6
Selectivity

Figare 1: Motivating Esample We evaluate the time to apply simple
predicate filtering an arithmetic column witha constant value

approach incurs metory overhead due to data copying. A com:
ot Lechpique Lo pvercome \his is to augment batches with a data
atructure that logically \asks out invalid tples {ie.a logical filter).
We refer o this data structure as 2 Sfilter representation. Two com-
fnon represenfations are (1) Selection Veetoss (SVe) and (2) Bitmaps
{BMs). ASVisa dense sorted list of tuple {dentifiers {TID) indicating
which tuples in the batch are valid during processing With BMs,
each tuple in the batch is assigned a positionally aligned bit; walid
wuples have their it set to 1. The DBMS marks tuples as invalid by
podifying the filker tepresentation alone without copying data.
Interestingly, previous warks choose 2 representation sirategy

without providing a clear {or empirical) justification. Vectorwise
and its devivatives rely selection vectors (6, 14,15, 17). BMDB2's
BLU [12] and the more recent VIP [11] rely on bitmaps for the
intermediary results of 8 \ablescan's filters and selertion vectors for
otber relational aperators. In this work, we find that supper ling both
representations and dynamically choosing berween them resulis
in better performance {han stalic implementaiions Depending on
the specific prioitive and the selectivity {ie. the ratio of selected
wples) of its input vecton selection veclors can outperform bitmaps
and vice-versa.

To liustrate the veed for deeper exploration of the tmpact of
chosen filler representation strategy, we present s experiment that
measutes the perfornance of evaluating a WHERE during @ sequential
Lable scan over a table composed of & single 64-bit inleger column.
For this experiment, we penerate the column's data using & uniform
distribution, and vary the input filler's selectivity between 0 and 1.
We defer the full description of our experimental setup 1o Section 3

We implement and measure five different execution stralegles
BMPartial, BAFull, and BAFullMarual all use bitmaps BMPartial
applies the operation only on selected tuples, while BMFull applies
it on all tuples. Likewise, BMFuliManual uses 2 hand-written SIMD
Kernel to apply the operation 1o all tuples in cach yector. SVPartial

D QUERY PROCESSING

on a Photon operator

I1: varchar

0

aa

position list

1
bbb 3

|
alale

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.1145/3465998.3466009

PHOTON: VECTORIZED QUERY PROCESSING

Photon does not use HyPer-style operator fusion so
that the DBMS can collect isolated metrics per

operator to help users understand query behavior.
— Vertical fusion over multiple operators in a pipeline.

Instead, Photon's engineers fuse expression

primitives to avoid excessive function calls.
— Horizontal fusion within a single operator.

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

HYPER: OPERATOR FUSION

SELECT * Generated Query Plan
FROM A, C,
(SELECT B.id, COUNT(*) for t in A:
FROM B if t.val == 123:
WHERE B.val = ? + 1 Materialize t in HashTable P<I(A.id=C.a_id)
GROUP BY B.id) AS B
WHERE A.val = 123 for t in B:
zmg é'%g B g'g—}g if t.val == <param> + 1:
s Aggregate t in HashTable I'(B.id)

NA.id=c.a_id§

. for t in I(B.id):
Materialize t in HashTable P<JI(B.1id=C.b_id)

GA.va1=123é
A for t3 in C:
#1 for t2 in P(B.id=C.b_id):

for t1 in PA(A.id=C.a_id):
emit(t1Dt2p<t3)

£CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

HYPER: OPERATOR FUSION

SELECT * Generated Query Plan
FROM A’ C, ---
(SELECT B.id, COUNT(*) for t in A: '
FROM B #1 ! if t.val == 123: 5
WHERE B.val = 7 + 1 : Materialize t in HashTable P<I(A.id=C.a_id) :
GROUP BY B.id) AS B N N NN
wHERE A X Va]_ ‘I 23 é:lflalrl."-i:""i.ﬁ"-é": --- ;
ﬁmg é 13 : g g 13 #Z t if t.val == <param> + 1:
= = ... Aggregate t in HashTable [(B.id)
43 o TR
' omlm e e s Materialize t in HashTable P<I(B.id=C.b_id)
9 s o I
A T

#1 4 i for t2 in P(B.id=C.b_id):

for t1 in PA(A.id=C.a_id):
o EMIECEIDAE2DAE3)
$=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

PHOTON: EXPRESSION FUSION

SELECT * FROM foo
WHERE cdate BETWEEN '2024-01-01' AND '2024-04-01';

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

PHOTON: EXPRESSION FUSION

SELECT * FROM xXX vec<offset> sel_geq_date(vec<date> batch, date val) {

WHERE cdate >= '2024-01-01" vec<offset> positions;
AND cdate <= '2024-04-01'; for (offset i = 0; i < batch.size(); i++)
if (batch[i] >= val) positions.append(i);
return (positions);

3

cdate >= '2024-01-01"

o

cdate <= '2024-04-01'

vec<offset> sel_leq_date(vec<date> batch, date val) {
vec<offset> positions;
xxx for (offset i = 0; i < batch.size(); i++)

if (batch[i] <= val) positions.append(i);
return (positions);

}

££CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

PHOTON: EXPRESSION FUSION

SELECT * FROM xxx
WHERE cdate >= '2024-01-01"
AND cdate <= '2024-04-01';

vec<offset> sel_between_dates(vec<date> batch,
date low, date high)| {

cdate >= '2024-01-01" vec<offset> positions;
AND —_—— for (offset i = 0; 1 < batch.size(); i++)
cdate <= '2024-04-01 if (batch[i] >= low && batch[i] <= high)
positions.append(i);
return (positions);

}

XXX

£CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

$2CMU-DB

15-721 (Spring 2024)

MEMORY MANAGEMENT

All memory allocations go to memory pool
managed by the DBR in the JVM.

— Single source of truth for runtime memory usage.

Because there are no data statistics, the DBMS has

to be more dynamic in its memory allocations.

— Instead of operators spilling its own memory to disk when
it runs out of space, operators request for more memory
from the manager who then decides what operators to
release memory.

— Simple heuristic that releases memory from the operator
that has the least allocated but enough to satisfy request.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

CATALYST QUERY OPTIMIZER

Cascades-style query optimizer for Spark SQL
written in Scala that executes transformations in
pre-defined stages similar to Microsoft SQL Server.

Three type of transformations:
— Logical-Logical ("Analysis & Optimization Rules")
— Logical-Physical ("Strategies")

— Physical-Physical ("Preparation Rules")

Source: Cheng Lian
&CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Xb2zm4-F1HI

PHOTON: PHYSICAL PLAN TRANSFORMATION

Traverse the original query plan bottoms-up to

convert it to a Photon-specific physical plan.
— New Goal: Limit the number of runtime switches between
old engine (Java) and new engine (C++).

Original Plan New Plan

(I —EEZ

> C++
PhotonFilter
\ I I

Source: Alex Behm

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/10.1145/3514221.3526054

RUNTIME ADAPTIVITY

Query-Level Adaptivity (Macro)

— Leverage statistics collected at the end of each shuffle stage
to re-evaluate previous query plan decisions

— This is provided by DBR wrapper.

— Similar to the Dremel approach we discussed last class.

Batch-Level Adaptivity (Micro)

— Specialized code paths inside of an operator to handle the
contents of a single tuple batch.

— This is done by Photon during query execution.

— Similar to Velox optimizations discussed in Lecture #05.

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2024/schedule.html#feb-07-2024

SPARK: ADAPTIVE QUERY OPTIMIZATION

Spark changes the query plan before a stages starts

based on observations from the preceding stage.
— Avoids the problem of optimizer making decisions with
inaccurate (or non-existing) data statistics.

Optimization Examples:

— Dynamically switch between shuffle vs. broadcast join.
— Dynamically coalesce partitions

— Dynamically optimize skewed joins

Source: Maryann Xue
$=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Xb2zm4-F1HI

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

After the shuffle completes, the
DBMS then combines underutilized
using heuristics.

Source: Maryann Xue
&CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Xb2zm4-F1HI

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

After the shuffle completes, the
DBMS then combines underutilized
using heuristics.

Source: Maryann Xue
&CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Xb2zm4-F1HI

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
using heuristics.

Source: Maryann Xue
&CMU-DB

15-721 (Spring 2024)

Partition #1

Partition #1

Partition #2

Partition #3

Partition #4

Partition #5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Xb2zm4-F1HI

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number P

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

After the shuffle completes, the
DBMS then combines underutilized
using heuristics.

Source: Maryann Xue
&CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Xb2zm4-F1HI

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number T r—

of shuffle partitions for each stage. . I

— Number needs to be large enough to avoid
Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
using heuristics.

Source: Maryann Xue
&CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Xb2zm4-F1HI

PHOTON: BATCH-LEVEL ADAPTIVITY

Custom Primitives for ASCII vs. UTF-8 Data

— ASCII encoded data is always 1-byte characters,
whereas UTF-8 data could use 1 to 4-byte characters.

Compact Sparse Vectors

— Copy tuples to new vectors before probing
haSh tables to maXimize SIMD utilization, | template <bool kHasNulls, bool kAllRowsActive> |

void SquareRootKernel(const intl6_tx RESTRICT pos_list,
int num_rows, const doublex RESTRICT input,

° const int8_t* RESTRICT nulls, doublex RESTRICT result) {
NO NULL ValueS mna VeCtOI‘ for (int i = 0; i < num rows; i++) {
. . . // branch compiles away since condition is
— Elide branching to checking null vector 1/ conpite-time constant.
int row_idx = kAllRowsActive ? i : pos_list[i];|
if (!kHasNulls || !nulls[row_idx]) {|
° ° result[row_idx] = sqrt(input[row_idx]);
No Inactive Rows in Vector }
— Elide indirect lookups in position lists)

£CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

TPC-H COMPARISON

Databricks 8 nodes + 1 driver
Scale Factor = 3000

B Spark SQL H Photon
1500000

o
3
S
S 1000000
=
=
S
=4

500000

£CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

DATABRICKS TPC-DS (26021)

Databricks announced audited TPC-DS results in
late 2021.

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

$2CMU-DB

15-721 (Spring 2024)

RICKS TPC-DS (2621)

AL ACTIAN £2 AMDIl et JIIE DQLI; FUT:[)TSU Hewtet Pacar

A Alibaba com CISCO Technolo Enterprise

nmachl $¢ [N

Nettrixs® NUTANDS 24 ORACLE @ RedHat reawspazs TTI VMWare

S Microsoft

nviDIA.

Home About the TPCr Benchmarks/Results * Downloads * TPCTC Contact ~ Miscellaneous ! Member Login

TPC-DS V3 All Results - Sorted by Performance
Version 3 Results As of 12-Apr-2023 at 3:50 PM [GMT] S
Note 1: TPC-DS Version 2 and TPC-DS Version 3 are NOT comparable.

Note 2: The TPC believes it is NOT valid to compare prices or price/performance of results in different currencies.

Note 3: The TPC believes that comparisons of TPC-DS results measured against different database sizes are misleading and discourages such comparisons. The TPC-DS results shown below are grouped by database size
to emphasize that only results within each group are comparable.

10,000 GB Results

I R T

J Alibaba Cloud Alibaba Group Enterprise
N_E:'E _ Alibaba Cloud AnalyticDB 18,898,559 59.27 CNY 06117120 | OB 3012 Linen Semver 22 (o) 06/17/20
Alibaba Cloud E- o Alibaba Cloud E- : Er
AI'I;,-IJ,-. MapReduce 11,569,838 237.03 CNY NR 04/17/20 MapReduce 4.0.1 CentOS Linux Release 7.4 04/18/20 A
H3C | H2CUniServer R4900 8.944478 | 42313 CNY NR 12123020 | GBase 8aVa Red Hat Enterprise Linux 1212320 | Y
. G3 Server 7.8
._ . Supermicro A+ Senver Transwarp ArgoDB Red Hat Enterprise Linux
éumuucn_ﬂ 2193BT-HNCOR 4,418,054 110.29 USD NR 08/31119 V1241 Server 7.6 0B/07/19 W

100,000 GB Resulis

v Perfarmance Sustem Date
“(@phDS) Price/kQphDS | Watls/KQphDS | 5 —0ob ity Database Operating System | o e
Databricks SOL 8.3 32,941,245 157.57 USD NR 1102721 | Databricks Pholon Engine Ubuntu 18.04.5 LTS 11102021 ¥
Alibaba Cloud E- Alibaba Cloud E-MapReduce CentOS Linux
JEL A 14,861,137 | 17523 USD NR ooneng | L0 S o9MEMe | Y

'NR' in the Watts/KQphDS column indicates that no energy data was reported for that benchmark.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.tpc.org/tpcds/results/tpcds_results5.asp

protocol a

ENTERPRISE

DATABRICKS
Databricks is gunning for Snowflake’s

AL ACTIAN £2 A COl'e bUSiness

Alibaba com

In a shot acr
T C c across) N .
Hl A Hl sS the bow to Snowflake, Databricks is s -t to announc
ann 1Ce o1

rodiict hise
product has achieved record performance |

I N

1 Tuesday that i ochi
evels. 'V that its flagship data w arehouse

NeEErixsM NUTANIDC

About the TPCr Benchmarks/Results * Downloads * TPCTC

Home

TPC-DS V3 All Results - Sorted by Performance

Version 3 Results As of 12-Apr-2023 at 3:50 PM [GMT]

Note 1: TPC-DS Version 2 and TPC-DS Version 3 are NOT comparable.
Note 2: The TPC believes it is NOT valid to compare prices or price/performance of results in differ|
Note 3: The TPC believes that comparisons of TPC-DS results measured against different databa:
to emphasize that only results within each group are comparable.

ibaba Cloud Analyticl .998,559 59.27 Cl
2 Alibaba Cloud AnalyticDB 18,998,559 59.27 CNY

=y, Alibaba Cloud E- B o 27 03
MapReduce 11,569,838 237.03 CNY

W 8,944,478 423.13 CNY

Supermicro A+ Server
T SRETNG 4,418,054 110.29 USD

e . . “ =z = Price/kQphDS By Joe Williams November 2, 2021
L Databricks SOL B.3 32,941,245 —_— MOSt Popular
= ﬁ 14,861,137 175.23 USD The rivalry between Databricks and Snowflake is ab
! /flake is about to b {
f‘f CMU.DB 'NR' in the Watts/KQphDS column indicates that no energy data was reported for that benchm (I)]::::rtht(:t:lll:;)SAtnfz chOl'lrcome'COL”d s e rzl];;z::ozv:fr;r BUIIeti”
2CMUDB 9 e undational pieces of modern computing. $

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.tpc.org/tpcds/results/tpcds_results5.asp
https://www.protocol.com/enterprise/databricks-snowflake-data-warehouse-tpc

DATABRICKS

o

Alibaba com

HITACHI

A ACTIAN

NeEErixsM NUTANIDC

Benchmarks/Results * Downloads * TPCTC

About the TPCr

Home

TPC-DS V3 All Results - Sorted by Performance

"At the enterprise level, maybe some CIO is going to care about what your official TPC

ranking is, but they don't make sales that way," said Carnegie Mellon University

associate professor Andy Pavlo.

protocol a

Databricks is
core business

In a shot across the bow to Snowflake, Da
PI‘HL ; :

gunning for Snowflake’s

tabricks is set to announce on Tuesday that its fl
Csday c S ag

luct has achieved record performance levels

££CMU-DB

15-721 (Spring 2024)

£7 Alibaba Cloud E- 11,569,838 237.03 CNY
MapReduce
H=C | HiCUniServer R4900 B.844478 | 42313 CNY
3
4 ’ ; Supermicro A+ Server
‘guuuumn 2103BT-HNCOR 4,418,054 110.29 USD
= ce QphDS
LDhbDS
S Databricks SOL 8.3 32,941,245 157.57 USD
datobricks
P=r, Alibaba Cloud E-
ManReduce 14,861,137 175.23 USD

'NR' in the Watts/KQphDS column indicates that no energy data was reported for that benchm:

By Joe Williams November 2, 2021

Most Popular
—
TR . .
m};e nl\ alr)I between Databricks and Snowflake is about to become
re hostile. And the outcome could | il
lave monumental ramifications fc i
: or Bulletins

or B i
ne of the most foundational pieces of modern computing.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.tpc.org/tpcds/results/tpcds_results5.asp
https://www.protocol.com/enterprise/databricks-snowflake-data-warehouse-tpc
https://www.protocol.com/enterprise/databricks-snowflake-data-warehouse-tpc

protocol a

ENTERPRISE

DATABRICKS
Databricks is gunning for Snowflake’s

AL ACTIAN £2 A COl'e bUSiness

Alibaba com

HITACHI

NeEErixsM NUTANIDC

n a shot acr CKS 1s se ce €SC
c across the |
' OW to Snowflake, Da abricks is set to announc
‘ : E > on Tue 7
product has achieved recor | performance levels o :

Downloads * TPCTC

Benchmarks/Results *

About the TPCr

Home

TPC-DS V3 All Results - Sorted by Performance

"At the enterprise level, maybe some CIO is going to care about what your official TPC
ranking is, but they don't make sales that way," said Carnegie Mellon University

associate professor Andy Pavlo.

£7 Alibsha Cloud B 11,569,838 | 237.03CNY
MapReduce
H33C | H2CUniServer R4500 B.944478 | 423130NY
G3
4 ’ ; Supermicro A+ Server
‘guuuumn 2103BT-HNCOR 4,418,054 110.29 USD

.._.‘ s C Price/kQphDS By Joe Williams November 2, 2021
m;mm Databricks SOL 5.3 32,941,245 157.57 USD e Most Popular
= w 14,861,137 175.23 USD The rivalry between Databricks and Snowflake is ab
' /flake is about to b
E—E CMU'DB 'NR'in the Watts/KQphDS column indicates that no energy data was reported for that benchm: o :Jl::::r:;l:]t(;lst:lllz;)SAtnfiLtl:(;:tlil!t)‘;lm;)e'comd = ——— rzn;;zg:oz‘;efr;r BUIIeti”s
al pieces of modern computing.

15-721 (Spring 2024) _—

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.tpc.org/tpcds/results/tpcds_results5.asp
https://www.protocol.com/enterprise/databricks-snowflake-data-warehouse-tpc
https://www.protocol.com/enterprise/databricks-snowflake-data-warehouse-tpc

SPARK ACCELERATORS

Since Photon is proprietary, there are other open-
source alternatives to accelerate Spark's runtime.

These systems redirect entire query plans to
separate runtime engines rather than use Photon's
fine-grain integration.

Notable Examples:

— Apache Gluten (Intel)

— RAPIDS Accelerator for Spark (Nvidia)
— Blaze (Kuaishou)

— Datafusion Comet (Apple)

£CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://gluten.apache.org/
https://docs.nvidia.com/spark-rapids/user-guide/latest/index.html
https://github.com/kwai/blaze
https://github.com/apache/arrow-datafusion-comet

£CMU-DB

15-721 (Spring 2024)

SPARK A

Since Photon is propris
source alternatives to a

These systems redirect
separate runtime engiy
fine-grain integration.

Notable Examples:
— Apache Gluten (Intel
— RAPIDS Accelerator

— Blaze (Kuaishou)
— Datafusion Comet (4

= THENEWSTACK Q

Apple’s Comet Brings Fast Vector
Processing to Apache Spark

Apple Software Engineer Chao Sun has submitted this Rust-based Plug-in to become an
Apache Software Foundation project, under the Apache Arrow umbrella.

Feb 8th, 2024 1:26pm by Joab Jackson

The Apple engineers behind the Rust-based plug-in, D A T A
called Apache Spark DataFusion Comet, have submitted °

it to become an Apache Software Foundation project,
under the Apache Arrow umbrella. It is built on the
extensible Apache DataFusion query engine (also
written in Rust) and the Arrow columnar data format. ¥

“Our goal is to accelerate Spark query execution via delegating Spark’s physical plan execution

to DataFusion’s highly modular execution framework, while still maintaining the same
semantics to Spark users,” explained Apple Software Engineer Chao Sun, on an Apache mailing

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://gluten.apache.org/
https://docs.nvidia.com/spark-rapids/user-guide/latest/index.html
https://github.com/kwai/blaze
https://github.com/apache/arrow-datafusion-comet
https://thenewstack.io/apple-comet-brings-fast-vector-processing-to-apache-spark/

OBSERVATION

The lack of statistics makes query optimization
harder for queries on data lakes. Adaptivity helps

for some things, but the DBMS can do a better job if
it knows something about the data.

What if there was a storage service for data lakes
that supported incremental changes so that the
DBMS could compute statistics?

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

DELTA LAKE (2019)

Transactional CRUD interface for A DELTA LAKE

incremental data ingestion of
structured data on top of object stores.

DBMS appends writes to a JSON-oriented log.

Background worker periodically convert log into
Parquet files (with computed statistics).

DELTA LAKE: HIGH-PERFORMANCE ACID TABLE
\S/EISDBR'ZA(%% OVER CLOUD OBJECT STORES

£CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/10.14778/3415478.3415560
https://dl.acm.org/doi/10.14778/3415478.3415560

APACHE KUDU (2015)

. APACHE
Storage engine for low-latency random access on i
structured data files in distributed file system.
— Updates are written to in-memory B+tree and then “l" -
converted to column store when written to disk. ‘o

— Vectorized execution for analytical queries.

No SQL interface (must use Impala). Only supports
low-level CRUD operations.

KUDU: STORAGE FOR FAST
ANALYTICS ON FAST DATA
WHITE PAPER 2015

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://kudu.apache.org/kudu.pdf
https://kudu.apache.org/kudu.pdf

APACHE HUDI (2016)

Transactional (MVCC) system for (pache
incremental data ingestion of structured m
data on top of object stores.
— Keeps track of partitioning, versioning, and schema
changes. Background compaction.
— Provides catalog service for runtime lookups and pruning

of meta-data.
— Supports both Parquet + ORC file formats.

Supports data ingestion from multiple sources:
— Examples: Kafka, Spark SQL, Flink SQL

£CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

Transactional (MVCC) system for

DATA STREAMS

<o L
%@\ 0 FIEEEEREe

DATABASES

CLOUD STORAGE

Source: Apache Hudi

APACHE HUDI (2016)

(‘ Apache ..
Ao
¥§ S & =

ACID Guarantees Incremental Pipelines

CHOEDIAD

LAKEHOUSE PLATFORM

N

"oy

spaik’

STREAM ANALYTICS

x dbt ~Z\mi|"mf'low

ORCHESTRATION

£CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://hudi.apache.org/

APACHE ICEBERG (2017) 1

Infrastructure and file format extension
to Parquet for maintaining catalog ICEBERG “

about data files in an object store.

— Keeps track of partitioning, versioning, and schema
changes.

— Provides catalog service for runtime lookups and pruning
of meta-data.

Snowflake added support for ingesting, creating,
and querying Iceberg files in 2021.

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

£=CMU-DB

15-721 (Spring 2024)

PARTING THOUGHTS

The interesting parts of Photon is in it use of
precompiled primitives and its integration with an
existing JVM-based runtime infrastructure.

Andy does not recommend building a Java OLAP
engine from scratch.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

£=CMU-DB

15-721 (Spring 2024)

PARTING THOUGHTS

The interesting parts of Photon is in it use of
precompiled primitives and its integration with an
existing JVM-based runtime infrastructure.

Andy does not recommend building a Java OLAP
engine from scratch.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

NEXT CLASS

Snowflake

£2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

	Introduction
	Slide 1: Databricks Photon / Spark SQL
	Slide 2: LAST CLASS

	History
	Slide 3: ADVENT OF SPARK
	Slide 4: SHARK (2013)
	Slide 5: SPARK SQL (2015)
	Slide 6: SPARK SQL (2015)
	Slide 7: JVM PROBLEMS

	Architecture
	Slide 8: DATABRICKS PHOTON (2022)
	Slide 9: DATABRICKS PHOTON (2022)
	Slide 10: DATABRICKS PHOTON
	Slide 11: SPARK: QUERY EXECUTION
	Slide 12: SPARK: QUERY EXECUTION
	Slide 13: SPARK: QUERY EXECUTION
	Slide 14: SPARK: QUERY EXECUTION
	Slide 15: SPARK: QUERY EXECUTION
	Slide 16: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 17: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 18: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 19: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 20: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 21: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 22: HYPER: OPERATOR FUSION
	Slide 23: HYPER: OPERATOR FUSION
	Slide 24: PHOTON: EXPRESSION FUSION
	Slide 25: PHOTON: EXPRESSION FUSION
	Slide 26: PHOTON: EXPRESSION FUSION
	Slide 27: MEMORY MANAGEMENT
	Slide 28: CATALYST QUERY OPTIMIZER
	Slide 29: PHOTON: PHYSICAL PLAN TRANSFORMATION

	Adaptivity
	Slide 30: RUNTIME ADAPTIVITY
	Slide 31: SPARK: ADAPTIVE QUERY OPTIMIZATION
	Slide 32: SPARK: PARTITION COALESCING
	Slide 33: SPARK: PARTITION COALESCING
	Slide 34: SPARK: PARTITION COALESCING
	Slide 35: SPARK: PARTITION COALESCING
	Slide 36: SPARK: PARTITION COALESCING
	Slide 37: PHOTON: BATCH-LEVEL ADAPTIVITY

	Benchmarks
	Slide 38: TPC-H COMPARISON
	Slide 39: DATABRICKS TPC-DS (2021)
	Slide 40: DATABRICKS TPC-DS (2021)
	Slide 41: DATABRICKS TPC-DS (2021)
	Slide 42: DATABRICKS TPC-DS (2021)
	Slide 43: DATABRICKS TPC-DS (2021)

	Other Accelerators
	Slide 44: SPARK ACCELERATORS
	Slide 45: SPARK ACCELERATORS

	Delta Lake
	Slide 46: OBSERVATION
	Slide 47: DELTA LAKE (2019)
	Slide 48: APACHE KUDU (2015)
	Slide 49: APACHE HUDI (2016)
	Slide 50: APACHE HUDI (2016)
	Slide 51: APACHE ICEBERG (2017)

	Conclusion
	Slide 52: PARTING THOUGHTS
	Slide 53: PARTING THOUGHTS
	Slide 54: NEXT CLASS

