
ADVANCED
DATABASE

SYSTEMS

Andy Pavlo
CMU 15-721
Spring 202418

Databricks
Photon /

Spark SQL

https://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/
https://db.cs.cmu.edu/

15-721 (Spring 2024)

LAST CLASS

Google Dremel is the foundation system
architecture for many modern OLAP systems.

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

ADVENT OF SPARK

High-performance and more expressive
replacement for Hadoop from Berkeley.
→ Separate compute / storage
→ Support for iterative algorithms that make multiple passes

on the same data set.

Written in Scala (the hot language in 2010),
meaning that it ran on the JVM.

Originally only supported a low-level RDD API.

Added DataFrame API for higher-level abstraction.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Pandas_(software)#DataFrames

15-721 (Spring 2024)

SHARK (2013)

Modified version of Facebook's Hive middleware
that converted SQL into Spark API programs.

Only supported SQL on data files registered in
Hive's catalog. Spark programs could not execute
SQL in between API calls.

Shark relied on the Hive query optimizer that was
designed for running map-reduce jobs on Hadoop.
→ Spark has a more feature-rich native API.

4

SHARK: SQL AND RICH ANALYTICS AT SCALE
SIGMOD 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/10.1145/2463676.2465288
https://dl.acm.org/doi/10.1145/2463676.2465288

15-721 (Spring 2024)

SPARK SQL (2015)

Row-based SQL engine natively inside of the Spark
runtime with Scala-based query codegen.
→ In-memory columnar representation for intermediate

results as raw byte buffers.
→ Dictionary encoding, RLE, bitpacking compressions.
→ In-memory shuffle between query stages.

DBMS converts a query's WHERE clause expression
trees into Scala ASTs. It then compiles these ASTs
to generate JVM bytecode.

5

SPARK SQL: RELATIONAL DATA
PROCESSING IN SPARK
SIGMOD 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/10.1145/2723372.2742797
https://dl.acm.org/doi/10.1145/2723372.2742797

15-721 (Spring 2024)

SPARK SQL (2015)

Row-based SQL engine natively inside of the Spark
runtime with Scala-based query codegen.
→ In-memory columnar representation for intermediate

results as raw byte buffers.
→ Dictionary encoding, RLE, bitpacking compressions.
→ In-memory shuffle between query stages.

DBMS converts a query's WHERE clause expression
trees into Scala ASTs. It then compiles these ASTs
to generate JVM bytecode.

5

SPARK SQL: RELATIONAL DATA
PROCESSING IN SPARK
SIGMOD 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/10.1145/2723372.2742797
https://dl.acm.org/doi/10.1145/2723372.2742797

15-721 (Spring 2024)

JVM PROBLEMS

Databricks' workloads were becoming CPU bound.
→ Fewer disk stalls because of NVMe SSD caching and

adaptive shuffling.
→ Better filtering to skip reading data

They found it difficult to optimize their JVM-based
Spark SQL execution engine further:
→ GC slowdown for heaps larger than 64GB
→ JIT codegen limitations for large methods

6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DATABRICKS PHOTON (2022)

Single-threaded C++ execution engine embedded
into Databricks Runtime (DBR) via JNI.
→ Overrides existing engine when appropriate.
→ Support both Spark's earlier SQL engine and Spark's

DataFrame API.
→ Seamlessly handle impedance mismatch between row-

oriented DBR and column-oriented Photon.

Accelerate execution of query plans over "raw /
uncurated" files in a data lake.

7

PHOTON: A FAST QUERY ENGINE
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054

15-721 (Spring 2024)

DATABRICKS PHOTON (2022)

Single-threaded C++ execution engine embedded
into Databricks Runtime (DBR) via JNI.
→ Overrides existing engine when appropriate.
→ Support both Spark's earlier SQL engine and Spark's

DataFrame API.
→ Seamlessly handle impedance mismatch between row-

oriented DBR and column-oriented Photon.

Accelerate execution of query plans over "raw /
uncurated" files in a data lake.

7

PHOTON: A FAST QUERY ENGINE
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054
https://twitter.com/andy_pavlo/status/1536843474925981697

15-721 (Spring 2024)

DATABRICKS PHOTON

Shared-Disk / Disaggregated Storage

Pull-based Vectorized Query Processing

Precompiled Primitives + Expression Fusion

Shuffle-based Distributed Query Execution

Sort-Merge + Hash Joins

Unified Query Optimizer + Adaptive Optimizations

8

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SPARK: QUERY EXECUTION

9

Distributed
File System

SELECT language, MAX(views)
 FROM wikipedia
 WHERE title LIKE "%Pavlo%"
 GROUP BY 1 ORDER BY 2 DESC
 LIMIT 100

Driver

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Stage #1
Partial Group By

SPARK: QUERY EXECUTION

9

Distributed
File System

Executor

Executor

Executor

Executor

Driver

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Stage #1
Partial Group By

SPARK: QUERY EXECUTION

9

Distributed
File System

Executor

Executor

Executor

Executor

Local In-Memory
Shuffle Store

Driver

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Stage #1
Partial Group By

Stage #2
Group By, Sort, Limit

SPARK: QUERY EXECUTION

9

Distributed
File System

Executor

Executor

Executor

Executor

Executor

Executor

Executor

Driver

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

Stage #1
Partial Group By

Stage #2
Group By, Sort, Limit

Stage #3
Sort, Limit

SPARK: QUERY EXECUTION

9

Distributed
File System

Executor

Executor

Executor

Executor

Executor

Executor

Executor

Executor

Driver

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PHOTON: VECTORIZED QUERY PROCESSING

Photon is a pull-based vectorized engine that uses
precompiled operator kernels (primitives).
→ Converts physical plan into a list of pointers to functions

that perform low-level operations on column batches.

Databricks: It is easier to build/maintain a
vectorized engine than a JIT engine.
→ Engineers spend more time creating specialized codepaths

to get closer to JIT performance.
→ With codegen, engineers write tooling and observability

hooks instead of writing the engine.

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNext invocation on a Photon operator
produces a column batch.
→ One or more column vectors with a position list vector.
→ Each column vector includes a null bitmap.

Databricks: Position list vectors performs better
than "active row" bitmap despite indirection.

11

col0: int32

55
66
77
-

data

0
0
0
1

null?

col1: varchar

aa
bbb
-
-

data

0
0
1
1

null?

position list

1
3

offset

C
ol

u
m

n
 B

at
ch

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNext invocation on a Photon operator
produces a column batch.
→ One or more column vectors with a position list vector.
→ Each column vector includes a null bitmap.

Databricks: Position list vectors performs better
than "active row" bitmap despite indirection.

11

col0: int32

55
66
77
-

data

0
0
0
1

null?

col1: varchar

aa
bbb
-
-

data

0
0
1
1

null?

position list

1
3

offset

C
ol

u
m

n
 B

at
chactive rows

0
1
0
1

set

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNext invocation on a Photon operator
produces a column batch.
→ One or more column vectors with a position list vector.
→ Each column vector includes a null bitmap.

Databricks: Position list vectors performs better
than "active row" bitmap despite indirection.

11

col0: int32

55
66
77
-

data

0
0
0
1

null?

col1: varchar

aa
bbb
-
-

data

0
0
1
1

null?

position list

1
3

offset

C
ol

u
m

n
 B

at
chactive rows

0
1
0
1

set

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNext invocation on a Photon operator
produces a column batch.
→ One or more column vectors with a position list vector.
→ Each column vector includes a null bitmap.

Databricks: Position list vectors performs better
than "active row" bitmap despite indirection.

11

col0: int32

55
66
77
-

data

0
0
0
1

null?

col1: varchar

aa
bbb
-
-

data

0
0
1
1

null?

position list

1
3

offset

C
ol

u
m

n
 B

at
chactive rows

0
1
0
1

set

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/abs/10.1145/3465998.3466009

15-721 (Spring 2024)

PHOTON: VECTORIZED QUERY PROCESSING

Photon does not use HyPer-style operator fusion so
that the DBMS can collect isolated metrics per
operator to help users understand query behavior.
→ Vertical fusion over multiple operators in a pipeline.

Instead, Photon's engineers fuse expression
primitives to avoid excessive function calls.
→ Horizontal fusion within a single operator.

12

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

HYPER: OPERATOR FUSION

13

Generated Query PlanSELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

for t in A:
 if t.val == 123:
 Materialize t in HashTable ⨝(A.id=C.a_id)

for t in B:
 if t.val == <param> + 1:
 Aggregate t in HashTable Γ(B.id)

for t in Γ(B.id):
 Materialize t in HashTable ⨝(B.id=C.b_id)

for t3 in C:
 for t2 in ⨝(B.id=C.b_id):
 for t1 in ⨝(A.id=C.a_id):
 emit(t1⨝t2⨝t3)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

HYPER: OPERATOR FUSION

13

Generated Query Plan

#1

#4

#2

#3

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

for t in A:
 if t.val == 123:
 Materialize t in HashTable ⨝(A.id=C.a_id)

for t in B:
 if t.val == <param> + 1:
 Aggregate t in HashTable Γ(B.id)

for t in Γ(B.id):
 Materialize t in HashTable ⨝(B.id=C.b_id)

for t3 in C:
 for t2 in ⨝(B.id=C.b_id):
 for t1 in ⨝(A.id=C.a_id):
 emit(t1⨝t2⨝t3)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT * FROM foo
 WHERE cdate BETWEEN '2024-01-01' AND '2024-04-01';

PHOTON: EXPRESSION FUSION

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT * FROM xxx
 WHERE cdate >= '2024-01-01'
 AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION

14

xxx

cdate >= '2024-01-01'
 AND
cdate <= '2024-04-01'

s

vec<offset> sel_geq_date(vec<date> batch, date val) {
 vec<offset> positions;
 for (offset i = 0; i < batch.size(); i++)
 if (batch[i] >= val) positions.append(i);
 return (positions);
}

vec<offset> sel_leq_date(vec<date> batch, date val) {
 vec<offset> positions;
 for (offset i = 0; i < batch.size(); i++)
 if (batch[i] <= val) positions.append(i);
 return (positions);
}

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

SELECT * FROM xxx
 WHERE cdate >= '2024-01-01'
 AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION

14

xxx

cdate >= '2024-01-01'
 AND
cdate <= '2024-04-01'

s

vec<offset> sel_between_dates(vec<date> batch,
 date low, date high) {
 vec<offset> positions;
 for (offset i = 0; i < batch.size(); i++)
 if (batch[i] >= low && batch[i] <= high)
 positions.append(i);
 return (positions);
}

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

MEMORY MANAGEMENT

All memory allocations go to memory pool
managed by the DBR in the JVM.
→ Single source of truth for runtime memory usage.

Because there are no data statistics, the DBMS has
to be more dynamic in its memory allocations.
→ Instead of operators spilling its own memory to disk when

it runs out of space, operators request for more memory
from the manager who then decides what operators to
release memory.

→ Simple heuristic that releases memory from the operator
that has the least allocated but enough to satisfy request.

15

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

CATALYST QUERY OPTIMIZER

Cascades-style query optimizer for Spark SQL
written in Scala that executes transformations in
pre-defined stages similar to Microsoft SQL Server.

Three type of transformations:
→ Logical→Logical ("Analysis & Optimization Rules")
→ Logical→Physical ("Strategies")
→ Physical→Physical ("Preparation Rules")

16

Source: Cheng Lian

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Xb2zm4-F1HI

15-721 (Spring 2024)

PHOTON: PHYSICAL PLAN TRANSFORMATION

Traverse the original query plan bottoms-up to
convert it to a Photon-specific physical plan.
→ New Goal: Limit the number of runtime switches between

old engine (Java) and new engine (C++).

17

Original Plan

File Scan

Filter

Shuffle

Output

New Plan

JVM C++

File Scan

Output

Adapter

PhotonFilter

PhotonShuffle

Transition
JNI

JNI

Source: Alex Behm

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/10.1145/3514221.3526054

15-721 (Spring 2024)

RUNTIME ADAPTIVITY

Query-Level Adaptivity (Macro)
→ Leverage statistics collected at the end of each shuffle stage

to re-evaluate previous query plan decisions
→ This is provided by DBR wrapper.
→ Similar to the Dremel approach we discussed last class.

Batch-Level Adaptivity (Micro)
→ Specialized code paths inside of an operator to handle the

contents of a single tuple batch.
→ This is done by Photon during query execution.
→ Similar to Velox optimizations discussed in Lecture #05.

18

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://15721.courses.cs.cmu.edu/spring2024/schedule.html#feb-07-2024

15-721 (Spring 2024)

SPARK: ADAPTIVE QUERY OPTIMIZATION

Spark changes the query plan before a stages starts
based on observations from the preceding stage.
→ Avoids the problem of optimizer making decisions with

inaccurate (or non-existing) data statistics.

Optimization Examples:
→ Dynamically switch between shuffle vs. broadcast join.
→ Dynamically coalesce partitions
→ Dynamically optimize skewed joins

19

Source: Maryann Xue

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Xb2zm4-F1HI

15-721 (Spring 2024)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
using heuristics.

20

Worker

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Xb2zm4-F1HI

15-721 (Spring 2024)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
using heuristics.

20

Worker

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Xb2zm4-F1HI

15-721 (Spring 2024)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
using heuristics.

20

Worker

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

Partition #1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Xb2zm4-F1HI

15-721 (Spring 2024)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
using heuristics.

20

Worker

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

Partition #1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Xb2zm4-F1HI

15-721 (Spring 2024)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
using heuristics.

20

Worker

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

Partition #1 Partition #2 Partition #5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://youtu.be/Xb2zm4-F1HI

15-721 (Spring 2024)

PHOTON: BATCH-LEVEL ADAPTIVITY

Custom Primitives for ASCII vs. UTF-8 Data
→ ASCII encoded data is always 1-byte characters,

whereas UTF-8 data could use 1 to 4-byte characters.

Compact Sparse Vectors
→ Copy tuples to new vectors before probing

hash tables to maximize SIMD utilization.

No NULL Values in a Vector
→ Elide branching to checking null vector

No Inactive Rows in Vector
→ Elide indirect lookups in position lists

21

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

TPC-H COMPARISON

22

0

500000

1000000

1500000

R
un

ti
m

e
(s

ec
)

Spark SQL Photon

Databricks 8 nodes + 1 driver
Scale Factor = 3000

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DATABRICKS TPC-DS (2021)

Databricks announced audited TPC-DS results in
late 2021.

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DATABRICKS TPC-DS (2021)

Databricks announced audited TPC-DS results in
late 2021.

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.tpc.org/tpcds/results/tpcds_results5.asp

15-721 (Spring 2024)

DATABRICKS TPC-DS (2021)

Databricks announced audited TPC-DS results in
late 2021.

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.tpc.org/tpcds/results/tpcds_results5.asp
https://www.protocol.com/enterprise/databricks-snowflake-data-warehouse-tpc

15-721 (Spring 2024)

DATABRICKS TPC-DS (2021)

Databricks announced audited TPC-DS results in
late 2021.

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.tpc.org/tpcds/results/tpcds_results5.asp
https://www.protocol.com/enterprise/databricks-snowflake-data-warehouse-tpc
https://www.protocol.com/enterprise/databricks-snowflake-data-warehouse-tpc

15-721 (Spring 2024)

DATABRICKS TPC-DS (2021)

Databricks announced audited TPC-DS results in
late 2021.

23

And only old people care about official TPC results!

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.tpc.org/tpcds/results/tpcds_results5.asp
https://www.protocol.com/enterprise/databricks-snowflake-data-warehouse-tpc
https://www.protocol.com/enterprise/databricks-snowflake-data-warehouse-tpc

15-721 (Spring 2024)

SPARK ACCELERATORS

Since Photon is proprietary, there are other open-
source alternatives to accelerate Spark's runtime.

These systems redirect entire query plans to
separate runtime engines rather than use Photon's
fine-grain integration.

Notable Examples:
→ Apache Gluten (Intel)
→ RAPIDS Accelerator for Spark (Nvidia)
→ Blaze (Kuaishou)
→ Datafusion Comet (Apple)

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://gluten.apache.org/
https://docs.nvidia.com/spark-rapids/user-guide/latest/index.html
https://github.com/kwai/blaze
https://github.com/apache/arrow-datafusion-comet

15-721 (Spring 2024)

SPARK ACCELERATORS

Since Photon is proprietary, there are other open-
source alternatives to accelerate Spark's runtime.

These systems redirect entire query plans to
separate runtime engines rather than use Photon's
fine-grain integration.

Notable Examples:
→ Apache Gluten (Intel)
→ RAPIDS Accelerator for Spark (Nvidia)
→ Blaze (Kuaishou)
→ Datafusion Comet (Apple)

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://gluten.apache.org/
https://docs.nvidia.com/spark-rapids/user-guide/latest/index.html
https://github.com/kwai/blaze
https://github.com/apache/arrow-datafusion-comet
https://thenewstack.io/apple-comet-brings-fast-vector-processing-to-apache-spark/

15-721 (Spring 2024)

OBSERVATION

The lack of statistics makes query optimization
harder for queries on data lakes. Adaptivity helps
for some things, but the DBMS can do a better job if
it knows something about the data.

What if there was a storage service for data lakes
that supported incremental changes so that the
DBMS could compute statistics?

25

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

DELTA LAKE (2019)

Transactional CRUD interface for
incremental data ingestion of
structured data on top of object stores.

DBMS appends writes to a JSON-oriented log.

Background worker periodically convert log into
Parquet files (with computed statistics).

26

DELTA LAKE: HIGH-PERFORMANCE ACID TABLE
STORAGE OVER CLOUD OBJECT STORES
VLDB 2020

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dl.acm.org/doi/10.14778/3415478.3415560
https://dl.acm.org/doi/10.14778/3415478.3415560

15-721 (Spring 2024)

APACHE KUDU (2015)

Storage engine for low-latency random access on
structured data files in distributed file system.
→ Updates are written to in-memory B+tree and then

converted to column store when written to disk.
→ Vectorized execution for analytical queries.

No SQL interface (must use Impala). Only supports
low-level CRUD operations.

27

KUDU: STORAGE FOR FAST
ANALYTICS ON FAST DATA
WHITE PAPER 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://kudu.apache.org/kudu.pdf
https://kudu.apache.org/kudu.pdf

15-721 (Spring 2024)

APACHE HUDI (2016)

Transactional (MVCC) system for
incremental data ingestion of structured
data on top of object stores.
→ Keeps track of partitioning, versioning, and schema

changes. Background compaction.
→ Provides catalog service for runtime lookups and pruning

of meta-data.
→ Supports both Parquet + ORC file formats.

Supports data ingestion from multiple sources:
→ Examples: Kafka, Spark SQL, Flink SQL

28

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

APACHE HUDI (2016)

Transactional (MVCC) system for
incremental data ingestion of structured
data on top of object stores.
→ Keeps track of partitioning, versioning, and schema

changes. Background compaction.
→ Provides catalog service for runtime lookups and pruning

of meta-data.
→ Supports both Parquet + ORC file formats.

Supports data ingestion from multiple sources:
→ Examples: Kafka, Spark SQL, Flink SQL

28

Source: Apache Hudi

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://hudi.apache.org/

15-721 (Spring 2024)

APACHE ICEBERG (2017)

Infrastructure and file format extension
to Parquet for maintaining catalog
about data files in an object store.
→ Keeps track of partitioning, versioning, and schema

changes.
→ Provides catalog service for runtime lookups and pruning

of meta-data.

Snowflake added support for ingesting, creating,
and querying Iceberg files in 2021.

29

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PARTING THOUGHTS

The interesting parts of Photon is in it use of
precompiled primitives and its integration with an
existing JVM-based runtime infrastructure.

Andy does not recommend building a Java OLAP
engine from scratch.

30

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

PARTING THOUGHTS

The interesting parts of Photon is in it use of
precompiled primitives and its integration with an
existing JVM-based runtime infrastructure.

Andy does not recommend building a Java OLAP
engine from scratch.

30

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

15-721 (Spring 2024)

NEXT CLASS

Snowflake

31

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

	Introduction
	Slide 1: Databricks Photon / Spark SQL
	Slide 2: LAST CLASS

	History
	Slide 3: ADVENT OF SPARK
	Slide 4: SHARK (2013)
	Slide 5: SPARK SQL (2015)
	Slide 6: SPARK SQL (2015)
	Slide 7: JVM PROBLEMS

	Architecture
	Slide 8: DATABRICKS PHOTON (2022)
	Slide 9: DATABRICKS PHOTON (2022)
	Slide 10: DATABRICKS PHOTON
	Slide 11: SPARK: QUERY EXECUTION
	Slide 12: SPARK: QUERY EXECUTION
	Slide 13: SPARK: QUERY EXECUTION
	Slide 14: SPARK: QUERY EXECUTION
	Slide 15: SPARK: QUERY EXECUTION
	Slide 16: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 17: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 18: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 19: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 20: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 21: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 22: HYPER: OPERATOR FUSION
	Slide 23: HYPER: OPERATOR FUSION
	Slide 24: PHOTON: EXPRESSION FUSION
	Slide 25: PHOTON: EXPRESSION FUSION
	Slide 26: PHOTON: EXPRESSION FUSION
	Slide 27: MEMORY MANAGEMENT
	Slide 28: CATALYST QUERY OPTIMIZER
	Slide 29: PHOTON: PHYSICAL PLAN TRANSFORMATION

	Adaptivity
	Slide 30: RUNTIME ADAPTIVITY
	Slide 31: SPARK: ADAPTIVE QUERY OPTIMIZATION
	Slide 32: SPARK: PARTITION COALESCING
	Slide 33: SPARK: PARTITION COALESCING
	Slide 34: SPARK: PARTITION COALESCING
	Slide 35: SPARK: PARTITION COALESCING
	Slide 36: SPARK: PARTITION COALESCING
	Slide 37: PHOTON: BATCH-LEVEL ADAPTIVITY

	Benchmarks
	Slide 38: TPC-H COMPARISON
	Slide 39: DATABRICKS TPC-DS (2021)
	Slide 40: DATABRICKS TPC-DS (2021)
	Slide 41: DATABRICKS TPC-DS (2021)
	Slide 42: DATABRICKS TPC-DS (2021)
	Slide 43: DATABRICKS TPC-DS (2021)

	Other Accelerators
	Slide 44: SPARK ACCELERATORS
	Slide 45: SPARK ACCELERATORS

	Delta Lake
	Slide 46: OBSERVATION
	Slide 47: DELTA LAKE (2019)
	Slide 48: APACHE KUDU (2015)
	Slide 49: APACHE HUDI (2016)
	Slide 50: APACHE HUDI (2016)
	Slide 51: APACHE ICEBERG (2017)

	Conclusion
	Slide 52: PARTING THOUGHTS
	Slide 53: PARTING THOUGHTS
	Slide 54: NEXT CLASS

