Project:
→ Final Presentations: **Thursday May 2\(^{nd}\) @ 9:00am**

Final Exam:
→ Given in class on **Wednesday April 24th**
→ Due on the same day as Final Presentation
LAST CLASS

Databricks Photon extension to Spark SQL.
The 2000s saw the rise of several special-purpose relational OLAP engines.
→ Vertica, Greenplum, MonetDB, Vectorwise, ParAccel

There many organizations trying to use SQL on top of Hadoop/HDFS in the early 2010s.
→ Hive, Presto, Impala, Stinger

All these systems were self-managed / on-prem...
HISTORICAL CONTEXT

Google's Dremel paper came out in 2011.

Facebook started building Presto in 2012.

Amazon licensed ParAccel in 2011 and released on AWS as Redshift in 2013.

SutterHill VCs recruited two Oracle engineers (Dageville, Cruanes) and Vectorwise co-founder (Żukowski) to build Snowflake in 2012.
SNOWFLAKE

Managed OLAP DBMS written in C++.
→ Shared-disk architecture with aggressive compute-side local caching.
→ Written from scratch. Did not borrow components from existing systems.
→ Custom SQL dialect and client-server network protocols.

Disclaimer: Snowflake sponsored this course in Spring 2018. You can watch the guest lecture!
SNOWFLAKE

Managed OLAP DBMS written in C++.
→ Shared-disk architecture with aggressive compute-side local caching.
→ Written from scratch. Did not borrow components from existing systems.
→ Custom SQL dialect and client-server network protocols.

Disclaimer: Snowflake sponsored this course in Spring 2018. You can watch the guest lecture!
SNOWFLAKE

Shared-Disk / Disaggregated Storage

Push-based Vectorized Query Processing

Precompiled Primitives

Separate Table Data from Meta-Data

No Buffer Pool

PAX Columnar Storage
 → Supports both proprietary + open-source formats

Sort-Merge (?) + Hash Joins

Unified Query Optimizer + Adaptive Optimizations
SNOWFLAKE: ARCHITECTURE

Data Storage: Cloud-hosted object store
→ Amazon S3, MSFT Azure Store, Google Cloud Storage

Virtual Warehouses: Worker Nodes
→ VM instances running Snowflake software with locally attached disks for caching.
→ Customer specifies the compute capacity.
→ Added support for serverless deployments in 2022.

Cloud Services: Coordinator/Scheduler/Catalog
→ Transactional key-value store (FoundationDB)
Worker Node (e.g., EC2 Instance)
→ Maintains a local cache of files + columns that previous Worker Processes have retrieved from storage.
→ Simple LRU replacement policy.
→ Optimizer assigns individual table files to worker nodes based on consistent hashing. This ensures that files are only cached in one location.

Worker Process (e.g., Unix Process)
→ Spawned for the duration of a query.
→ Can push intermediate results to other Worker Processes or write to storage.
SNOWFLAKE: VECTORIZED QUERY PROCESSING

Snowflake is a push-based vectorized engine that uses precompiled primitives for operator kernels.
→ Pre-compile variants using C++ templates for different vector data types.
→ Only uses codegen (via LLVM) for tuple serialization/deserialization between workers.

Does not rely on shuffle step between stages
→ Worker processes push data to each other.

Does not support partial query retries
→ If a worker fails, then the entire query has to restart.
SNOWFLAKE: WORK STEALING

Optimizer determines which files workers will retrieve for processing a query before execution.

When a worker process completes scanning its input files, it can request from peer worker processes that it scans their files for them.

The requestor always downloads from storage instead of the peer to avoid additional burden.
If a query plan fragment will process a large amount of data, then the DBMS can temporarily deploy additional worker nodes to accelerate its performance.

Flexible compute worker nodes write results to storage as if it was a table.

Source: Libo Wang
SNOWFLAKE: FLEXIBLE COMPUTE

If a query plan fragment will process a large amount of data, then the DBMS can temporarily deploy additional worker nodes to accelerate its performance.

Flexible compute worker nodes write results to storage as if it was a table.

Source: Libo Wang
Cloud object storage (AWS S3) is slower than local disk. And each I/O has higher CPU overhead because of HTTPS API calls.

But cloud storage supports fetching offsets from files. This allows the DBMS to fetch headers and then determine what portions of a file it needs.

Snowflake decided to instead invest heavily on building its own caching layer to hide latencies.
Snowflakes (mostly) stores all tables in their internal columnar format by breaking them up into **micropartition** files.

- Immutable files using PAX storage format
- Original data for each micropartition is 50-500MB but these get compressed down to ~16MB per file

Snowflake **automatically clusters** and re-arranges micropartitions in the background based on query access patterns.
Snowflake provides custom data types to store semi-structured data.

→ **VARIANT, ARRAY, OBJECT** types.

Instead of determining data types of JSON/XML fields during reads, the DBMS automatically infers format and breaks them out into binary columns.

→ Example: Convert string "2024-04-17" into 4-byte **DATE**.

→ Always keep the original unparsed data in case the inference is incorrect.
SNOWFLAKE: CONSISTENT HASHING

DBMS uses consistent hashing to map micropartition files to worker nodes.
→ The mapping is transactional so that all workers are in sync on which node is responsible for which files.
→ Ensures query fragments (tasks) that access the same micropartition are assigned to same worker nodes.

Allows Snowflake to add new compute nodes without changing micropartition assignments
→ Avoid having to wipe all locally cached files.
SNOWFLAKE: QUERY OPTIMIZER

Unified Cascades-style top-down optimization.
→ Snowflake refers to their optimizer as the "compiler".

Optimizer checks catalog to identify what micropartitions it can prune / skip before the query starts executing.
→ Determining how many micropartitions a pipeline will access helps determine the complexity of the query.

DBMS also supports query plan hints and runtime adaptivity.

Source: Jiaqi Yan
SNOWFLAKE: STATISTICS COLLECTION

DBMS maintains statistics for data store in Snowflake's proprietary table format.
→ Only simple zone maps. No histograms/sketches.
→ Statistics are in sync with data when using internal file format (micropartitions).

Table + Micropartitions:
→ # of rows, size in bytes with compression information

Columns:
→ Min/Max, Null/Distinct counts

Source: Jiaqi Yan
SNOWFLAKE: PRUNING

Optimizer uses statistics to determine what micropartitions to skip. Maintain local cache to ensure fast evaluation during optimization.

Supports evaluating complex expressions during pruning pass.
→ Requires specialized expression evaluators that operate on zone map information.
→ Also need to consider null indicators.

```
SELECT * FROM xxx
WHERE col1 + col2 > 1234;
```

```
SELECT * FROM xxx
WHERE DATE_TRUNC('YEAR', cdate) = 2024;
```
SNOWFLAKE: PRUNING

Optimizer uses statistics to determine what micropartitions to skip. Maintain local cache to ensure fast evaluation during optimization.

Supports evaluating complex expressions during pruning pass.
→ Requires specialized expression evaluators that operate on zone map information.
→ Also need to consider null indicators.

```sql
SELECT * FROM xxx WHERE col1 + col2 > 1234;
```

```sql
SELECT * FROM xxx WHERE cdate BETWEEN '2024-01-01' AND '2024-12-31';
```
After determining join ordering, Snowflake's optimizer identifies aggregation operators to push down into the plan below joins.

The optimizer adds the downstream aggregations but then the DBMS only enables them at runtime according to statistics observed during execution.

Source: Bowei Chen
After determining join ordering, Snowflake's optimizer identifies aggregation operators to push down into the plan below joins.

The optimizer adds the downstream aggregations but then the DBMS only enables them at runtime according to statistics observed during execution.
SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering, Snowflake’s optimizer identifies aggregation operators to push down into the plan below joins.

The optimizer adds the downstream aggregations but then the DBMS only enables them at runtime according to statistics observed during execution.

Aggregation Placement — An Adaptive Query Optimization for Snowflake

Snowflake’s Data Cloud is backed by a data platform designed from the ground up to leverage cloud computing technology. The platform is delivered as a fully managed service, providing a user-friendly experience to run complex analytical workloads easily and efficiently without the burden of managing on-premise infrastructure. Snowflake’s architecture separates the compute layer from the storage layer. Compute workloads on the same dataset can scale independently and run in isolation without interfering with each other, and compute resources could be allocated and scaled on demand within seconds. The cloud-native architecture makes Snowflake a powerful platform for data warehousing, data engineering, data science, and many other types of applications. More about Snowflake architecture can be found in Key Concepts & Architecture documentation and the Snowflake Elastic Data Warehouse research paper.
Databricks Sets Official Data Warehousing Performance Record

by Raymond Xu and Mostafa Mohamed
November 2, 2021 in Company Blog

Today, we are proud to announce that Databricks SQL has set a new world record in TDOT3 TPC-DS, the gold standard performance benchmark for data warehousing. Databricks SQL outperformed the previous record by 2.2x. Unlike most other benchmark news, this result has been formally audited and reviewed by the TPC council.

These results were corroborated by research from Barcelona Supercomputing Center, which frequently runs benchmarks that are derivative of TPC-DS on popular data warehouses. Their latest research benchmarked Databricks and Snowflake, and found that Databricks was 2.7x faster and 12x better in terms of price-performance. This result validated the thesis that data warehousing, such as...
Databricks Sets Official Data Warehousing Performance Record

Barcelona Supercomputing Center test derived from TPC-DS 100TB Power run (lower is better)
Industry Benchmarks and Competing with Integrity

When we founded Snowflake, we set out to build an innovative platform. We had the opportunity to take into account what had worked well and what hadn’t in prior architectures and implementations. We saw how we could leverage the cloud to rethink the limits of what was possible. We also focused on ease of use and building a system that ‘just worked.’ We knew there were many opportunities to improve upon prior implementations and innovate to lead on performance and scale, simplicity of administration, and data-driven collaboration.
Industry Benchmarks and Competing with Integrity

When we founded Snowflake, we set out to build an innovative platform. We wanted to give organizations the opportunity to take into account what had worked well and what hadn’t in prior warehouse designs and implementations. We saw how we could leverage the cloud to rethink the approach and make this possible. We also focused on ease of use and building a system that just worked. We knew there were many opportunities to improve upon prior implementations and innovate to lead on performance and scale, simplicity of administration, and data-driven collaboration.

Snowflake Claims Similar Price/Performance to Databricks, but Not So Fast!

On Nov 2, 2021 we announced that we set the official world record for the fastest data warehouse with our Databricks SQL Warehouse platform. These results were audited and reported by the official Transaction Processing Performance Council (TPC) in a 37-page document available online at tpc.org. We also shared a third-party benchmark by the Barcelona Supercomputing Center (BSC) outlining that Databricks SQL is significantly faster and more cost effective than Snowflake.

A lot has happened since then: many congratulations, some questions, and some sour grapes. We take this opportunity to reiterate that we stand by our blog post and the results: Databricks SQL provides superior performance and price performance over Snowflake, even on data warehousing workloads (TPC-DS).
Databricks Sees Strong Warehousing Record

Barcelona Supercom from TPC-DS 100TB

AUTHOR
Benoît Dagvile

Thierry Crunace

SUBSCRIBE

When we founded Snowflake, we set out to build an innovative platform and opportunity to take into account what had worked well and what hadn’t and implementations. We saw how we could leverage the cloud to rethink what was possible. We also focused on ease of use and building a system that knew there were many opportunities to improve upon prior implementations. Lead on performance and scale simplicity of administration, and data

Snowflake Claims Similar Price/Performance to Databricks, but Not So Fast!

TPC-DS 100TB- DERIVED POWER TEST

Lower is better

- Snowflake (BSC)
- Snowflake Self-Published Prebaked Data Set
- Snowflake Official TPC-DS Data Set
- Databricks (BSC)

8397
3760
7276
3108
Like Dremel and Databricks, Snowflake has the problem that the DBMS does not have statistics if data files are created outside of the DBMS.

→ Snowflake originally required users to load all data files into the DBMS before they can be queried.

Snowflake expanded its architecture to support additional methods for ingesting data.

→ Snowpipe (via Apache Arrow)

→ **External Tables** (2019)

→ Hybrid Tables (2022)
SNOWFLAKE HYBRID TABLES (2022)

Unistore service allows users to execute OLTP workloads directly in Snowflake ecosystem.

→ Customer declares a table as "hybrid" (row + columnar)
→ Write updates to row-based storage with strong transactional guarantees.
→ Background jobs merge them into micropartition files.

OLAP queries retrieve data from row-based and columnar storage and then merges the results.
Transactional key-value store used by Snowflake for its catalog service early in its design.

→ Impressive deterministic testing infrastructure.
→ See their 2020 CMU-DB talk for more info.

When Apple bought FoundationDB in 2015, Snowflake maintained their own fork.
Apple then open-sourced FoundationDB in 2018 and works closely with Snowflake dev team.
PARTING THOUGHTS

Snowflake created the roadmap on how to build a scalable cloud-based OLAP DBMS as a service.

Andy still considers it a state-of-the-art system but there are many things about its internals that are not public.
PARTING THOUGHTS

Snowflake created the roadmap on how to build a scalable cloud-based OLAP DBMS as a service.

Andy still considers it a state-of-the-art system but there are many things about its internals that are not public.
DuckDB