ADVANCED c ;
DATABASE o g

SYSTEMS \ump o

DuckDB /
MotherDuck

Andy Pavlo Carnegie
2 O cMU 15-721 Mellon
Spring 2024 University

https://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/
https://db.cs.cmu.edu/

LAST CLASS

Snowflake Data Warehouse

greddit DATAENGINEERING m

| | | preferences | logout
What matters to you when choosin

g a data platform? i.e. Snowflake,
Databricks, BigQuery, RedshiftfiBY (scirdataengineering)

57 points submitted 1 day ago by Single_Anything_2980
sorted by: best w

29 comments share save hide report crosspost

[-] discord-ian 67 points 1 day ago

You are way overthinking it. Here is the flow chart of how this decision is made. Are you
on Google? If yes BigQuery. If you are on AWS or Azure, then ask are you are a spark

shop. If yes, then Databricks. If no, do you have money and like a positive experience?
If yes, then Snowflake. Otherwise, choose Redshift.

permalink embed save report reply

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.reddit.com/r/dataengineering/comments/1c5dau3/what_matters_to_you_when_choosing_a_data_platform/kztwtz4/

HISTORICAL CONTEXT

CW!I researchers recognized that data scientists do
not use the full query capabilities of DBMSs due to
the overhead of setting up and accessing data.

In 2017 they created an embedded version of
MonetDB called MonetDBLite to run inside of R

applications.
— Running in-process reduces the cost of transferring data
back and forth between the DBMS and the application.

But MonetDB had too much legacy baggage...

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://github.com/MonetDB/MonetDBLite-R

DUCKDB (2019)

Multi-threaded embedded (in-process, serverless)

DBMS that executes SQL over disparate data files.

— PostgreSQL-like dialect with quality-of-life enhancements.
— "SQLite for Analytics"

Provides zero-copy access to query results via
Arrow to client code running in same process.

The core DBMS is nearly all custom C++ code with

little to no third-party dependencies.

— Relies on extensions ecosystem to expand capabilities.

~ = | DUCKDB: AN EMBEDDABLE
ANALYTICAL DATABASE
SIGMOD 2019

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3299869.3320212

DUCKDB

Shared-Everything
Push-based Vectorized Query Processing

Precompiled Primitives
Multi-Version Concurrency Control
Morsel Parallelism + Scheduling
PAX Columnar Storage

Sort-Merge + Hash Joins

Stratified Query Optimizer
— Supports unnesting of arbitrary subqueries

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

DUCKDB: PUSH-BASED PROCESSING 1

System originally used pull-based vectorized query
processing but found it unwieldly to expand to

support more complex parallelism.
— Cannot invoke multiple pipelines simultaneously.

Switched to a push-based query processing model in
2021. Each operator determines whether it will
execute in parallel on its own instead of a
centralized executor.

£=CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

DUCKDB: PUSH-BASER.PROCE

System originally used pu |RSE_—_—
processing but found it U TSR

<> Code ~

This PR implements and switches to a push-b

ased execution model. A summary of the
support more complex paEs
pp ° k u]tiple pi i * All PhysicalOperators are reworked to use a push-based API. GetChunkInternal is replaced by
—> m ;

Cannot invoke

two separate interfaces, a Source Interface and an Operator interface. The Sink interface is
mostly kept as-is. See below for maore detai.

Pipelines are no longer scheduled as-is. Instead, pipelines are s
are scheduled. See below for more detail.

By default DuckDB wil) default to using all availabie cores (i.e. [PRAGMA threads=X is no longer
S fitChe d tO a p uSh - as e . necessary unless you want to reduce th

€ number of threads DuckDB uses),

plit up into "events" and events

Several bugs refated to parallelism are

() (’ (I () ‘ I(l (cases with the Pyth xed (prir ”y’e,"D ecursive CTEs and s
2 2 1 EaCh p ra- r wi ython GIL). Ome edge

UNION nodes now support parallelism
FULL/RIGHT OUTER join probes now support parallelism

eXecute in parallel On ltS DuphcateelfminatedjofnsnowSuppor’rparaIIeHsm

Whether or not an Operator supports parallelism

centralized executor.

Several fixes for the query profiler so that

1S now determined in the operator itself, rather

the correct number of tuples/timing is now output

Pipelines can now be pretty-printed as we|

| (TODO: this should probably be added to the
EXPLAIN output as welj)

* Simplification for the Arrow scan - since parallel init js always called in the main thread the
extra Iockmg/thread-checks are no longer required,

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://github.com/duckdb/duckdb/pull/2393

DUCKDB: FINE-GRAINED CONTROL

Vector Cache:

— Buffer results between operators until it
fills vector.

Scan Sharing:

— Push results from one child operator to
multiple parent operators (DAG plan).

Backpressure / Async 10
— Pause operator execution when buffers are
full or when waiting for remote I/O.

Source: Mark Raasveldt

$CMU-DB

15-721 (Spring 2024)

AGGREGATE
SUM(rev+tax)

BUFFER
10MB

HASH JOIN

cust.id=sales.cust_id

e

FILTER

amount >= 90%

AGGREGATE
SUM(rev)

HASH JOIN

cust.id=sales.cust_id

HTTP SCAN
https://...

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21

DUCKDB: VECTORS

Custom internal vector layout for intermediate

results that is compatible with Velox.

Supports multiple vector types:

Flat Constant
Uncompressed array All rows have the same value
1)
2 1
3 1
4 1
5 1
Physiczg Logical

Physical Logical

Source: Mark Raasveldt

$CMU-DB

15-721 (Spring 2024)

Dictionary

of indexes to dictionary

Map
0
1
0
0
1

SelectionVector

Physical

oo »ow |

Logical

Sequence
Base and increment

]

Base

]

Increment

Physical

EEY Iy

Logical

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21

Source: Mark Raasveldt

$CMU-DB

15-721 (Spring 2024)

DUCKDB: VECTORS

DuckDB uses a unified format to process all vector

types without needing to decompress them first.
— Reduce # of specialized primitives per vector type

Flat Constant Dictionary
Uncompressed array All rows have the same value Map of |ndexes to dictionary
1 a
2 b
a
3 a
4 b
5
SelectionVector
Physical & Logical Physical Logical Physic I Logical
m 1 v
0 . | Unified
0
ol | »Vector
0 . | Format
Data Selection Data Selection Data Selection

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21

DUCKDB: DATAFRAMES

DuckDB supports DataFrame libraries to query
databases without using SQL.
— dpylr (R-lang)

— Ibis (Python)
Integration libraries generate DuckDB logical plans :

the DBMS converts into optimized physical plans.
— Bypasses the SQL parser

Zero-copy result passing via Apache Arrow.

$2CMU-DB
111111 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dplyr.tidyverse.org/
https://ibis-project.org/

DUCKDB: STORAGE FORMAT

DBMS's built-in storage format maintains a single
PAX-oriented file per database.

— Splits tables into row groups with 120k tuples.
— On-disk encoding is different than in-memory
representation.

Two phase compression scheme:

— Analyze: Sample a small portion of a column to determine
the best encoding scheme

— Compress: Encode the values and write it to disk.

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

DUCKDB: STORAGE FORMAT

DBMS's built-in s c at maintaing 3 single
Version Taxi On-Time Lineitem Notes Date
PAX-oriented file DuckDB v0.2.8 153GB 173GB 0.85GB Uncompresseq July 2021
— Splits tables int.o I DuckDB v0.2.9 11.2GB 1.25GB 0.79GB RLE + Constant September 2021
— On-disk en.COdlng DuckDB v0.3.2 108GB 098GB 0.56GB Bitpacking February 2022
representation. DuckDB v0.3.3 69GB 0.23GB 0.326B Dictionary April 2022
DuckDB v0.5.0 6.6GB 021GB 0.20GB FoR September 2022
Two phase comp DuckDB v0.6.0 48GB 0.21GB 017GB FSST+ Chimp October 2022
— Analyze: SamPk csv 17.0GB 1.11GB 07268
the best enCOdlni Parquet (Uncompressed) 4568 0.12ap 0.31GB
— Compress: Encg Parquet (Snappy) 32GB 011GB o0.1sgp
Parquet (ZSTD) 26GB 0.08GB 0.15GB

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

$CMU-DB

15-721 (Spring 2024)

DUCKDB: EXTERNAL TABLES

The DBMS can also access external data files via

extensions.
— Parquet, Arrow, SQLite, JSON,

Can also install extensions to retrieve files from
remote filesystems (HTTP, S3)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

MOTHERDUCK

Cloud-based service that provides automatic
execution of DuckDB queries on v
4" MotherDuck

serverless compute nodes.

— Remote nodes are DuckDB instances running inside of
containers and connected to object stores.

— Exposes remote catalog to local instance.

The latest versions of DuckDB already include
extension to connect to MotherDuck.

MOTHERDUCK: DUCKDB IN THE
CLOUD AND IN THE CLIENT
CIDR 2024

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.cidrdb.org/cidr2024/papers/p46-atwal.pdf
https://www.cidrdb.org/cidr2024/papers/p46-atwal.pdf

MOTHERDUCK

Cloud-based service that provides automatic

Client Layer Compute Layer Storage Layer her DUCK

@ Python Shell £ Observability Duckling Storage Duckling Storage
H Container EX1 Container Ext.
MotherDuck
DuckDB o Extension O ® Monitoring . ;
! N Duckling Storage ., Duckling 4 Storage
H & Container Ext. Container Ext.

- b Cloud Storage

& Local Database O= Authentication !
:

Host Service Storage Service & Caching

E.g: Laptop running Jupyter Notebook B

> A& Load Balancer ol

r

'/, Duckling Storage
MotherDuck H > X ° (=« STTTT P AT rrrrrrre
DuckDB-Wasm o Extension ! - Container Ext. puckling e Differential
() Service Layer Contalner ° Ext. DuckDB database
MotherDuck GUI: Notebooks, SQL IDE & storage
Interactive Results Explorer
Host Service Storage Service & Caching

L] Web Browser g Users, Secrets,

Databases, ..

Duckling 'l Storage
Container W Ext.

Source: MotherDuck

MOTHERDUCK: DUCKDB IN THE
CLOUD AND IN THE CLIENT
CIDR 2024

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.cidrdb.org/cidr2024/papers/p46-atwal.pdf
https://www.cidrdb.org/cidr2024/papers/p46-atwal.pdf

MOTHERDUCK: HYBRID QUERY PROCESSING

Introduces a new "bridge" operators
LOCAL

that passes tuple streams between

. DOWNLOAD-SINK
local and remote DuckDB instances.

— Leverages operator pausing feature that
DuckDB added from switching to push- HASHJOITI REMOTE
based execution.

UPLOAD-SOURCE

REMOTE
Query optimization occurs on the

'
local instance as normal and then uses LOCAL

cost-based rules to decide what to run o
customer AS cust sales

locally vs. remote.

$CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

PARTING THOUGHTS

DuckDB is brilliant and its adoption is enviable.
— Right place. Right time. Right problem.

Andy bet his earlier research agenda wrongly on in-
memory DBMSs.

This is what HyPer/Umbra could have become if

they were open-source...

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

PARTING THOUGHTS

DuckDB is brilliant and its adoption is enviable.
— Right place. Right time. Right problem.

Andy bet his earlier research agenda wrongly on in-
memory DBMSs.

This is what HyPer/Umbra could have become if

they were open-source...

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

NEXT CLASS

Yellowbrick

$2CMU-DB

15-721 (Spring 2024)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

	Introduction
	Slide 1: DuckDB / MotherDuck
	Slide 2: LAST CLASS

	History
	Slide 3: HISTORICAL CONTEXT

	Architecture
	Slide 4: DUCKDB (2019)
	Slide 5: DUCKDB

	Execution
	Slide 6: DUCKDB: PUSH-BASED PROCESSING
	Slide 7: DUCKDB: PUSH-BASED PROCESSING
	Slide 8: DUCKDB: FINE-GRAINED CONTROL
	Slide 9: DUCKDB: VECTORS
	Slide 10: DUCKDB: VECTORS
	Slide 11: DUCKDB: DATAFRAMES

	Storage
	Slide 12: DUCKDB: STORAGE FORMAT
	Slide 13: DUCKDB: STORAGE FORMAT
	Slide 14: DUCKDB: EXTERNAL TABLES

	MotherDuck
	Slide 15: MOTHERDUCK
	Slide 16: MOTHERDUCK
	Slide 17: MOTHERDUCK: HYBRID QUERY PROCESSING

	Conclusion
	Slide 18: PARTING THOUGHTS
	Slide 19: PARTING THOUGHTS
	Slide 20: NEXT CLASS

