
ADVANCED 
DATABASE 

SYSTEMS

Andy Pavlo
CMU 15-721
Spring 202420

DuckDB / 
MotherDuck

https://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/
https://db.cs.cmu.edu/


15-721 (Spring 2024)

LAST CLASS

Snowflake Data Warehouse

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.reddit.com/r/dataengineering/comments/1c5dau3/what_matters_to_you_when_choosing_a_data_platform/kztwtz4/


15-721 (Spring 2024)

HISTORICAL CONTEXT

CWI researchers recognized that data scientists do 
not use the full query capabilities of DBMSs due to 
the overhead of setting up and accessing data.

In 2017 they created an embedded version of 
MonetDB called MonetDBLite to run inside of R 
applications.
→ Running in-process reduces the cost of transferring data 

back and forth between the DBMS and the application.

But MonetDB had too much legacy baggage…

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://github.com/MonetDB/MonetDBLite-R


15-721 (Spring 2024)

DUCKDB (2019)

Multi-threaded embedded (in-process, serverless) 
DBMS that executes SQL over disparate data files.
→ PostgreSQL-like dialect with quality-of-life enhancements.
→ "SQLite for Analytics"

Provides zero-copy access to query results via 
Arrow to client code running in same process.

The core DBMS is nearly all custom C++ code with 
little to no third-party dependencies.
→ Relies on extensions ecosystem to expand capabilities.

4

DUCKDB: AN EMBEDDABLE 
ANALYTICAL DATABASE
SIGMOD 2019

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3299869.3320212


15-721 (Spring 2024)

DUCKDB

Shared-Everything

Push-based Vectorized Query Processing

Precompiled Primitives

Multi-Version Concurrency Control

Morsel Parallelism + Scheduling

PAX Columnar Storage

Sort-Merge + Hash Joins

Stratified Query Optimizer
→ Supports unnesting of arbitrary subqueries

5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

DUCKDB: PUSH-BASED PROCESSING

System originally used pull-based vectorized query 
processing but found it unwieldly to expand to 
support more complex parallelism.
→ Cannot invoke multiple pipelines simultaneously.

Switched to a push-based query processing model in 
2021. Each operator determines whether it will 
execute in parallel on its own instead of a 
centralized executor.

6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

DUCKDB: PUSH-BASED PROCESSING

System originally used pull-based vectorized query 
processing but found it unwieldly to expand to 
support more complex parallelism.
→ Cannot invoke multiple pipelines simultaneously.

Switched to a push-based query processing model in 
2021. Each operator determines whether it will 
execute in parallel on its own instead of a 
centralized executor.

6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://github.com/duckdb/duckdb/pull/2393


15-721 (Spring 2024)

BUFFER
10MB

SCAN
sales

HASH JOIN
cust.id=sales.cust_id

HTTP SCAN
https://...

HASH JOIN
cust.id=sales.cust_id

DUCKDB: FINE-GRAINED CONTROL

Vector Cache:
→ Buffer results between operators until it 

fills vector. 

Scan Sharing:
→ Push results from one child operator to 

multiple parent operators (DAG plan).

Backpressure / Async IO
→ Pause operator execution when buffers are 

full or when waiting for remote I/O.

7

SCAN
sales

FILTER
amount >= 90%

AGGREGATE
SUM(rev+tax)

AGGREGATE
SUM(rev)

SCAN
sales

AGGREGATE
SUM(rev+tax)

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21


15-721 (Spring 2024)

DUCKDB: VECTORS

Custom internal vector layout for intermediate 
results that is compatible with Velox.

Supports multiple vector types:

8

Source: Mark Raasveldt

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21


15-721 (Spring 2024)

DUCKDB: VECTORS

DuckDB uses a unified format to process all vector 
types without needing to decompress them first.
→ Reduce # of specialized primitives per vector type

9

Source: Mark Raasveldt

Unified
Vector
Format

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21


15-721 (Spring 2024)

DUCKDB: DATAFRAMES

DuckDB supports DataFrame libraries to query 
databases without using SQL.
→ dpylr (R-lang)
→ Ibis (Python)

Integration libraries generate DuckDB logical plans 
the DBMS converts into optimized physical plans.
→ Bypasses the SQL parser 

Zero-copy result passing via Apache Arrow.

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://dplyr.tidyverse.org/
https://ibis-project.org/


15-721 (Spring 2024)

DUCKDB: STORAGE FORMAT

DBMS's built-in storage format maintains a single 
PAX-oriented file per database.
→ Splits tables into row groups with 120k tuples.
→ On-disk encoding is different than in-memory 

representation.

Two phase compression scheme:
→ Analyze: Sample a small portion of a column to determine 

the best encoding scheme
→ Compress: Encode the values and write it to disk.

11

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

DUCKDB: STORAGE FORMAT

DBMS's built-in storage format maintains a single 
PAX-oriented file per database.
→ Splits tables into row groups with 120k tuples.
→ On-disk encoding is different than in-memory 

representation.

Two phase compression scheme:
→ Analyze: Sample a small portion of a column to determine 

the best encoding scheme
→ Compress: Encode the values and write it to disk.

11

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

DUCKDB: EXTERNAL TABLES

The DBMS can also access external data files via 
extensions.
→ Parquet, Arrow, SQLite, JSON,

Can also install extensions to retrieve files from 
remote filesystems (HTTP, S3)

12

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

MOTHERDUCK

Cloud-based service that provides automatic
execution of DuckDB queries on
serverless compute nodes.
→ Remote nodes are DuckDB instances running inside of 

containers and connected to object stores.
→ Exposes remote catalog to local instance.

The latest versions of DuckDB already include 
extension to connect to MotherDuck.

13

MOTHERDUCK: DUCKDB IN THE 
CLOUD AND IN THE CLIENT
CIDR 2024

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.cidrdb.org/cidr2024/papers/p46-atwal.pdf
https://www.cidrdb.org/cidr2024/papers/p46-atwal.pdf


15-721 (Spring 2024)

MOTHERDUCK

Cloud-based service that provides automatic
execution of DuckDB queries on
serverless compute nodes.
→ Remote nodes are DuckDB instances running inside of 

containers and connected to object stores.
→ Exposes remote catalog to local instance.

The latest versions of DuckDB already include 
extension to connect to MotherDuck.

13

MOTHERDUCK: DUCKDB IN THE 
CLOUD AND IN THE CLIENT
CIDR 2024

Source: MotherDuck

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.cidrdb.org/cidr2024/papers/p46-atwal.pdf
https://www.cidrdb.org/cidr2024/papers/p46-atwal.pdf


15-721 (Spring 2024)

MOTHERDUCK: HYBRID QUERY PROCESSING

Introduces a new "bridge" operators 
that passes tuple streams between 
local and remote DuckDB instances.
→ Leverages operator pausing feature that 

DuckDB added from switching to push-
based execution.

Query optimization occurs on the 
local instance as normal and then uses 
cost-based rules to decide what to run 
locally vs. remote.

14

SCAN-LOCAL
sales

HASHJOIN-REMOTE
cust.id=sales.cust_id

SCAN-REMOTE
customer AS cust

UPLOAD-SOURCE
REMOTE

UPLOAD-SINK
LOCAL

DOWNLOAD-SINK
REMOTE

DOWNLOAD-SOURCE
LOCAL

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

PARTING THOUGHTS

DuckDB is brilliant and its adoption is enviable.
→ Right place. Right time. Right problem.

Andy bet his earlier research agenda wrongly on in-
memory DBMSs.

This is what HyPer/Umbra could have become if 
they were open-source…

15

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

PARTING THOUGHTS

DuckDB is brilliant and its adoption is enviable.
→ Right place. Right time. Right problem.

Andy bet his earlier research agenda wrongly on in-
memory DBMSs.

This is what HyPer/Umbra could have become if 
they were open-source…

15

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

NEXT CLASS

Yellowbrick

16

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

	Introduction
	Slide 1: DuckDB / MotherDuck
	Slide 2: LAST CLASS

	History
	Slide 3: HISTORICAL CONTEXT

	Architecture
	Slide 4: DUCKDB (2019)
	Slide 5: DUCKDB

	Execution
	Slide 6: DUCKDB: PUSH-BASED PROCESSING
	Slide 7: DUCKDB: PUSH-BASED PROCESSING
	Slide 8: DUCKDB: FINE-GRAINED CONTROL
	Slide 9: DUCKDB: VECTORS
	Slide 10: DUCKDB: VECTORS
	Slide 11: DUCKDB: DATAFRAMES

	Storage
	Slide 12: DUCKDB: STORAGE FORMAT
	Slide 13: DUCKDB: STORAGE FORMAT
	Slide 14: DUCKDB: EXTERNAL TABLES

	MotherDuck
	Slide 15: MOTHERDUCK
	Slide 16: MOTHERDUCK
	Slide 17: MOTHERDUCK: HYBRID QUERY PROCESSING

	Conclusion
	Slide 18: PARTING THOUGHTS
	Slide 19: PARTING THOUGHTS
	Slide 20: NEXT CLASS


