
ADVANCED 
DATABASE 

SYSTEMS

Andy Pavlo
CMU 15-721
Spring 202421

Yellowbrick
Database 

System

https://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/
https://db.cs.cmu.edu/


15-721 (Spring 2024)

ADMINISTRIVIA

Project:
→ Final Presentations: Thursday May 2nd @ 9:00am
→ See Piazza@59 for more information.

Final Exam:
→ Given in class on Wednesday April 24th 
→ Due on the same day as Final Presentation

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://piazza.com/class/lr54wb70qmi5t/post/59


15-721 (Spring 2024)

LAST CLASS

DuckDB Embedded OLAP DBMS

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

HISTORICAL CONTEXT

Most DBMSs are designed for off-the-shelf 
hardware. But some vendors sell a complete 
solution ("appliance") where the DBMS is 
optimized for a specific hardware configuration.
→ Companies also fab custom database accelerators too.

Yellowbrick started off as a high-end OLAP 
appliance…

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

HISTORICAL CONTEXT

Most DBMSs are designed for off-the-shelf 
hardware. But some vendors sell a complete 
solution ("appliance") where the DBMS is 
optimized for a specific hardware configuration.
→ Companies also fab custom database accelerators too.

Yellowbrick started off as a high-end OLAP 
appliance…

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

HISTORICAL CONTEXT

Most DBMSs are designed for off-the-shelf 
hardware. But some vendors sell a complete 
solution ("appliance") where the DBMS is 
optimized for a specific hardware configuration.
→ Companies also fab custom database accelerators too.

Yellowbrick started off as a high-end OLAP 
appliance…

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://yellowbrick.com/


15-721 (Spring 2024)

HISTORICAL CONTEXT

Most DBMSs are designed for off-the-shelf 
hardware. But some vendors sell a complete 
solution ("appliance") where the DBMS is 
optimized for a specific hardware configuration.
→ Companies also fab custom database accelerators too.

Yellowbrick started off as a high-end OLAP 
appliance…

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://yellowbrick.com/
https://yellowbrick.com/wp-content/uploads/2022/10/WP-Andromeda-Optimized-Instances.pdf


15-721 (Spring 2024)

YELLOWBRICK (2014)

OLAP DBMS written on C++ and derived from a 
hardfork of PostgreSQL v9.5.
→ Uses PostgreSQL's front-end (networking, parser, catalog) 

to handle incoming SQL requests.

Originally started as an on-prem appliance with 
FPGA acceleration. Switched to DBaaS in 2021.

Cloud-version uses Kubernetes for all components.

5

YELLOWBRICK: AN ELASTIC DATA 
WAREHOUSE ON KUBERNETES
CIDR 2024

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.cidrdb.org/cidr2024/papers/p2-cusack.pdf
https://www.cidrdb.org/cidr2024/papers/p2-cusack.pdf


15-721 (Spring 2024)

YELLOWBRICK

Shared-Disk / Disaggregated Storage

Push-based Vectorized Query Processing

Transpilation Query Codegen (C++)

Compute-side Caching

Separate Row + PAX Columnar Storage

Sort-Merge + Hash Joins

PostgreSQL Query Optimizer++

Insane Systems Engineering

6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

YELLOWBRICK: ARCHITECTURE

Data Warehouse Instance:
→ Front-end service that manages connections, parsing, plan 

caching, row store, meta-data, and concurrency control.

Worker Nodes:
→ Responsible for query execution, managing compute 

hardware, and maintaining local cache.

Background / Maintenance Nodes:
→ Compilation, Bulk Loading

7

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

YELLOWBRICK: ARCHITECTURE

8

Object Store

Source: Mark Cusack

Worker Nodes

Compiler
Service

Bulk Loader Service

Row-Store

Scheduler

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/macusack


15-721 (Spring 2024)

YELLOWBRICK: ARCHITECTURE

8

Object Store

Source: Mark Cusack

Worker Nodes

Compiler
Service

Bulk Loader Service

Row-Store

Scheduler

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/macusack


15-721 (Spring 2024)

YELLOWBRICK: ARCHITECTURE

8

Object Store

Source: Mark Cusack

Worker Nodes

Compiler
Service

Bulk Loader Service

Custom S3 Client

Custom
UDP Protocol

Custom
NVMe Driver

Row-Store

Scheduler

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/macusack


15-721 (Spring 2024)

YELLOWBRICK: ARCHITECTURE

Based on a microsevice architecture where all 
components run as Docker pods in Kubernetes.
→ Kubernetes handles system state management, scalability, 

and provisioning.
→ Hides all Kubernetes operations behind SQL (!!!).   

Assigns one worker pod per worker node to 
guarantee exclusive access to hardware.

9

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

YELLOWBRICK: QUERY EXECUTION

Pushed-based vectorized query processing that 
supports both row- and columnar-oriented data 
with early materialization.
→ Introduces transpose operators to convert data back and 

forth between row and columnar formats.

Holistic query compilation via source-to-source 
transpilation.

Yellowbrick's architecture goal is for workers to 
always process data residing in the CPU's L3 cache 
and not memory.

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

YELLOWBRICK: QUERY COMPILATION

Split query plan into independent fragments and 
then transpile each fragment into C++ source code.

Dedicated compilation service uses LLVM to 
compile each fragment into machine code.
→ Use separate threads to compile fragments and then stitch 

them back together at runtime with dynamic linking.

Compiler service maintains a fragment cache to 
reduce compilation costs.
→ Tracks engine version and other dependencies.

12

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

YELLOWBRICK: QUERY OPTIMIZER

Heavily modified version of PostgreSQL's stratified 
optimizer to do support zone map filtering.

Yellowbrick's main addition is a cost-based join 
order selection using statistics collected from row-
store compaction and ANALYZE passes over data.
→ Histograms, HyperLogLog, HeavyHitters

Supports sideways information passing of Bloom 
filters for hash joins.

13

Source: Mark Cusack

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/macusack


15-721 (Spring 2024)

YELLOWBRICK: STORAGE

Yellowbrick only supports managed storage based 
on its proprietary file format.
→ Can specify sharding / local-sorting attribute per table.
→ ~100MB files with 2MB chunks.
→ Supports bulk loading Parquet files with some limitations.

Maintains row-store data in front-end and 
columnar data in object store.
→ Background task to move row-store data to columnar files.
→ Also supports compaction of modified columnar files.
→ DBMS bulk loads to object store in columnar files, 

bypassing row-store and worker SSD caches.

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

YELLOWBRICK: SHARDING

The DBMS assigns data files to 
workers using Rendezvous Hashing. 
→ Also used in Druid and Ignite.

For each file, generate a hash value for 
each worker by concatenating the 
worker's identifier to the hashed key.

Pick the hash value with the highest 
weight.

15

worker1 worker2 worker3File #1

File#2

File #3

hash(file1 + worker1) = 100

hash(file1 + worker2) = 90

hash(file1 + worker3) = 80

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Rendezvous_hashing
https://druid.apache.org/docs/latest/design/router/#avatica-query-balancing
https://www.gridgain.com/resources/blog/data-distribution-in-apache-ignite


15-721 (Spring 2024)

YELLOWBRICK: SHARDING

The DBMS assigns data files to 
workers using Rendezvous Hashing. 
→ Also used in Druid and Ignite.

For each file, generate a hash value for 
each worker by concatenating the 
worker's identifier to the hashed key.

Pick the hash value with the highest 
weight.

15

worker1

worker2

worker3

worker2

worker3

worker1

worker3

worker1

worker2

File #1

File#2

File #3

Assigned Node

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Rendezvous_hashing
https://druid.apache.org/docs/latest/design/router/#avatica-query-balancing
https://www.gridgain.com/resources/blog/data-distribution-in-apache-ignite


15-721 (Spring 2024)

YELLOWBRICK: SHARDING

The DBMS assigns data files to 
workers using Rendezvous Hashing. 
→ Also used in Druid and Ignite.

For each file, generate a hash value for 
each worker by concatenating the 
worker's identifier to the hashed key.

Pick the hash value with the highest 
weight.

15

worker1

worker2

worker3

worker2

worker2

worker3

worker1

worker3

worker3

worker1

worker2

worker1

File #1

File#2

File #3

File #4

Assigned Node

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Rendezvous_hashing
https://druid.apache.org/docs/latest/design/router/#avatica-query-balancing
https://www.gridgain.com/resources/blog/data-distribution-in-apache-ignite


15-721 (Spring 2024)

YELLOWBRICK: SHARDING

The DBMS assigns data files to 
workers using Rendezvous Hashing. 
→ Also used in Druid and Ignite.

For each file, generate a hash value for 
each worker by concatenating the 
worker's identifier to the hashed key.

Pick the hash value with the highest 
weight.

15

worker1

worker2

worker3

worker2

worker2

worker3

worker1

worker3

worker3

worker1

worker2

worker1

worker4File #1

File#2

File #3

File #4

Assigned Node

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Rendezvous_hashing
https://druid.apache.org/docs/latest/design/router/#avatica-query-balancing
https://www.gridgain.com/resources/blog/data-distribution-in-apache-ignite


15-721 (Spring 2024)

YELLOWBRICK: SHARDING

The DBMS assigns data files to 
workers using Rendezvous Hashing. 
→ Also used in Druid and Ignite.

For each file, generate a hash value for 
each worker by concatenating the 
worker's identifier to the hashed key.

Pick the hash value with the highest 
weight.

15

worker1

worker2

worker3

worker2

worker2

worker3

worker1

worker3

worker3

worker1

worker2

worker1

worker4

worker4

File #1

File#2

File #3

File #4

Assigned Node

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Rendezvous_hashing
https://druid.apache.org/docs/latest/design/router/#avatica-query-balancing
https://www.gridgain.com/resources/blog/data-distribution-in-apache-ignite


15-721 (Spring 2024)

YELLOWBRICK: SHARDING

The DBMS assigns data files to 
workers using Rendezvous Hashing. 
→ Also used in Druid and Ignite.

For each file, generate a hash value for 
each worker by concatenating the 
worker's identifier to the hashed key.

Pick the hash value with the highest 
weight.

15

worker1

worker2

worker3

worker2

worker2

worker3

worker1

worker3

worker3

worker1

worker2

worker1

worker4

worker4

worker4

File #1

File#2

File #3

File #4

Assigned Node

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Rendezvous_hashing
https://druid.apache.org/docs/latest/design/router/#avatica-query-balancing
https://www.gridgain.com/resources/blog/data-distribution-in-apache-ignite


15-721 (Spring 2024)

YELLOWBRICK: SHARDING

The DBMS assigns data files to 
workers using Rendezvous Hashing. 
→ Also used in Druid and Ignite.

For each file, generate a hash value for 
each worker by concatenating the 
worker's identifier to the hashed key.

Pick the hash value with the highest 
weight.

15

worker1

worker2

worker3

worker2

worker2

worker3

worker1

worker3

worker3

worker1

worker2

worker1

worker4

worker4

worker4

worker4

File #1

File#2

File #3

File #4

Assigned Node

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://en.wikipedia.org/wiki/Rendezvous_hashing
https://druid.apache.org/docs/latest/design/router/#avatica-query-balancing
https://www.gridgain.com/resources/blog/data-distribution-in-apache-ignite


15-721 (Spring 2024)

OBSERVATION

Remember that the OS is our enemy.

What can a DBMS implement for itself if it wants 
to ensure that it never has to talk to the OS after 
starting up?

16

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

YELLOWBRICK: OS OPTIMIZATIONS

Memory Allocator

Thread Scheduler

Device Drivers

Network Protocols

17

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

YELLOWBRICK: MEMORY ALLOCATOR

Custom NUMA-aware, latch-free allocator that gets 
all the memory needed upfront at start-up
→ Using mmap with mlock with huge pages.
→ Allocations are grouped by query to avoid fragmentation.
→ Claims their allocator is 100x faster than libc malloc.

Each worker also has a buffer pool manager that 
uses MySQL-style approximate LRU-K to store 
cached data files.

18

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://wiki.debian.org/Hugepages
https://15445.courses.cs.cmu.edu/fall2023/schedule.html#sep-18-2023


15-721 (Spring 2024)

MEMORY PAGES

OS maps physical pages to virtual memory pages.

The CPU's MMU maintains a TLB that contains the 
physical address of a virtual memory page.
→ The TLB resides in the CPU caches.
→ It cannot obviously store every possible entry for a large 

memory machine. 

When you allocate a block of memory, the allocator 
keeps that it aligned to page boundaries.

19

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

HUGE PAGES

Instead of always allocating memory in 4 KB pages, 
Linux supports creating larger pages (2MB to 1GB)
→ Each page must be a contiguous blocks of memory.
→ Greatly reduces the # of TLB entries

Recent research from Google suggests that huge 
pages improved their data center workload by 7%.
→ 6.5% improvement in Spanner's throughput

Huge Pages makes sense in an OLAP DBMS that is 
accessing large read-only data blocks at a time.

20

Source: Evan Jones

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.usenix.org/conference/osdi21/presentation/hunter
https://www.evanjones.ca/hugepages-are-a-good-idea.html


15-721 (Spring 2024)

HUGE PAGES

Instead of always allocating memory in 4 KB pages, 
Linux supports creating larger pages (2MB to 1GB)
→ Each page must be a contiguous blocks of memory.
→ Greatly reduces the # of TLB entries

Recent research from Google suggests that huge 
pages improved their data center workload by 7%.
→ 6.5% improvement in Spanner's throughput

Huge Pages makes sense in an OLAP DBMS that is 
accessing large read-only data blocks at a time.

20

Source: Evan Jones

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.usenix.org/conference/osdi21/presentation/hunter
https://www.evanjones.ca/hugepages-are-a-good-idea.html


15-721 (Spring 2024)

WARNING: THIS IS DATABASE CANCER

TRANSPARENT HUGE PAGES

With Transparent Huge Pages (THP), the OS 
reorganizes and compacts pages in the background.
→ Split larger pages into smaller pages.
→ Combine smaller pages into larger pages.
→ Can cause the DBMS process to stall on memory access.

Nearly every DBMS advises to disable THP:
→ Oracle, SingleStore, NuoDB, MongoDB, Sybase, TiDB.
→ Vertica says to enable THP only for newer Linux distros.

21

Source: Alexandr Nikitin

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.kernel.org/doc/html/next/admin-guide/mm/transhuge.html
http://docs.oracle.com/cd/E11882_01/install.112/e47689/pre_install.htm#LADBI1519
https://support.singlestore.com/hc/en-us/articles/4412348517012-Disable-THP-Transparent-Hugepages-
http://doc.nuodb.com/Latest/Content/Note-About-%20Using-Transparent-Huge-Pages.htm
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/
https://blogs.sap.com/2014/05/22/sap-iq-and-linux-hugepagestransparent-hugepages/
https://www.pingcap.com/blog/transparent-huge-pages-why-we-disable-it-for-databases/
https://www.vertica.com/docs/9.3.x/HTML/Content/Authoring/InstallationGuide/BeforeYouInstall/transparenthugepages.htm
https://alexandrnikitin.github.io/blog/transparent-hugepages-measuring-the-performance-impact/


15-721 (Spring 2024)

WARNING: THIS IS DATABASE CANCER

TRANSPARENT HUGE PAGES

With Transparent Huge Pages (THP), the OS 
reorganizes and compacts pages in the background.
→ Split larger pages into smaller pages.
→ Combine smaller pages into larger pages.
→ Can cause the DBMS process to stall on memory access.

Nearly every DBMS advises to disable THP:
→ Oracle, SingleStore, NuoDB, MongoDB, Sybase, TiDB.
→ Vertica says to enable THP only for newer Linux distros.

21

Source: Alexandr Nikitin

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.kernel.org/doc/html/next/admin-guide/mm/transhuge.html
http://docs.oracle.com/cd/E11882_01/install.112/e47689/pre_install.htm#LADBI1519
https://support.singlestore.com/hc/en-us/articles/4412348517012-Disable-THP-Transparent-Hugepages-
http://doc.nuodb.com/Latest/Content/Note-About-%20Using-Transparent-Huge-Pages.htm
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/
https://blogs.sap.com/2014/05/22/sap-iq-and-linux-hugepagestransparent-hugepages/
https://www.pingcap.com/blog/transparent-huge-pages-why-we-disable-it-for-databases/
https://www.vertica.com/docs/9.3.x/HTML/Content/Authoring/InstallationGuide/BeforeYouInstall/transparenthugepages.htm
https://alexandrnikitin.github.io/blog/transparent-hugepages-measuring-the-performance-impact/


15-721 (Spring 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two 
entry points ("old" vs "young").
→ New pages are always inserted to the head 

of the old list.
→ If pages in the old list is accessed again, 

then insert into the head of the young list.

35

Disk Pages

page0

page1

page2

page3

page4

page5

Newest←Oldest

Young List

page6 page2 page8page9 page3page5page4

Old ListHEAD HEAD

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two 
entry points ("old" vs "young").
→ New pages are always inserted to the head 

of the old list.
→ If pages in the old list is accessed again, 

then insert into the head of the young list.

36

Disk Pages

page0

page1

page2

page3

page4

page5

Newest←Oldest

Young List

Q1

page6 page2 page8page9 page3page5page4

Old ListHEAD HEAD

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two 
entry points ("old" vs "young").
→ New pages are always inserted to the head 

of the old list.
→ If pages in the old list is accessed again, 

then insert into the head of the young list.

37

Disk Pages

page0

page1

page2

page3

page4

page5

Newest←Oldest

Young List

Q1

page9 page3page5page4

Old List

page1 page6 page2

HEAD HEAD

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two 
entry points ("old" vs "young").
→ New pages are always inserted to the head 

of the old list.
→ If pages in the old list is accessed again, 

then insert into the head of the young list.

38

Disk Pages

page0

page1

page2

page3

page4

page5

Newest←Oldest

Young List

page9 page3page5page4

Old List

page1 page6 page2

Q2

HEAD HEAD

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two 
entry points ("old" vs "young").
→ New pages are always inserted to the head 

of the old list.
→ If pages in the old list is accessed again, 

then insert into the head of the young list.

39

Disk Pages

page0

page1

page2

page3

page4

page5

Newest←Oldest

Young List Old List

page1 page6 page2

Q2

page5 page9page4page1 page3

HEAD HEAD

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

YELLOWBRICK: SCHEDULER

Custom cooperative multi-tasking thread scheduler 
(coroutines) that synchronizes every 100ms with a 
centralized cluster scheduler.

Only one query executes at a time in a cluster. All 
cores on the same worker execute the same task at 
the same time.
→ The goal is to ensure that cores are processing recently 

arrived data in L3 instead of memory.

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

YELLOWBRICK: DEVICE DRIVERS

Custom NVMe / NIC drivers that run 
in user-space to avoid memory copy 
overheads.
→ Falls back to Linux drivers if necessary.

Custom reliable UDP network 
protocol with kernel-bypass (DPDK) 
for internal communication.
→ Each CPU has its own receive/transmit 

queues that it polls asynchronously.
→ Only sends data to a "partner" CPU at 

other workers.

24

2430

1626

1222

1976

1358

995

0

1000

2000

3000

2-Workers 3-Workers 4-Workers

T
P

C
-D

S 
R

u
n

ti
m

e

Cluster Size

TCP DPDK

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

BENCHMARK

25

995

2690
3199

2298

4846

2974

$8.42 

$8.00 

$9.78 

$8.22 

$6.00 

$7.22 

$5.00

$6.00

$7.00

$8.00

$9.00

$10.00

0

1000

2000

3000

4000

5000

6000

Yellowbrick Snowflake Redshift BigQuery Synapse Databricks

C
o

st
 P

er
 H

o
u

r

T
o

ta
l 

R
u

n
ti

m
e 

(s
ec

)
TPC-DS (Scalefactor 1)

Source: Mark Cusack $2.33 $5.98 $8.69 $5.25 $8.08 $5.96

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://www.linkedin.com/in/macusack


15-721 (Spring 2024)

PARTING THOUGHTS

Yellowbrick's systems engineering street skills are 
ridiculously impressive.
→ If building it today, you should probably use eBPF instead 

of DPDK.

But remember that all these optimizations will not 
matter if the DBMS chooses crappy query plans.

26

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

PARTING THOUGHTS

Yellowbrick's systems engineering street skills are 
ridiculously impressive.
→ If building it today, you should probably use eBPF instead 

of DPDK.

But remember that all these optimizations will not 
matter if the DBMS chooses crappy query plans.

26

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024


15-721 (Spring 2024)

NEXT CLASS

Last lecture: Amazon Redshift

27

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024

	Introduction
	Slide 1: Yellowbrick Database System
	Slide 2: ADMINISTRIVIA
	Slide 3: LAST CLASS

	History
	Slide 4: HISTORICAL CONTEXT
	Slide 5: HISTORICAL CONTEXT
	Slide 6: HISTORICAL CONTEXT
	Slide 7: HISTORICAL CONTEXT

	Architecture
	Slide 8: YELLOWBRICK (2014)
	Slide 9: YELLOWBRICK
	Slide 10: YELLOWBRICK: ARCHITECTURE
	Slide 11: YELLOWBRICK: ARCHITECTURE
	Slide 12: YELLOWBRICK: ARCHITECTURE
	Slide 13: YELLOWBRICK: ARCHITECTURE
	Slide 14: YELLOWBRICK: ARCHITECTURE

	Execution
	Slide 15: YELLOWBRICK: QUERY EXECUTION
	Slide 17: YELLOWBRICK: QUERY COMPILATION
	Slide 18: YELLOWBRICK: QUERY OPTIMIZER

	Storage
	Slide 19: YELLOWBRICK: STORAGE
	Slide 20: YELLOWBRICK: SHARDING
	Slide 21: YELLOWBRICK: SHARDING
	Slide 22: YELLOWBRICK: SHARDING
	Slide 23: YELLOWBRICK: SHARDING
	Slide 24: YELLOWBRICK: SHARDING
	Slide 25: YELLOWBRICK: SHARDING
	Slide 26: YELLOWBRICK: SHARDING

	Optimizations
	Slide 27: OBSERVATION
	Slide 28: YELLOWBRICK: OS OPTIMIZATIONS
	Slide 29: YELLOWBRICK: MEMORY ALLOCATOR
	Slide 30: MEMORY PAGES
	Slide 31: HUGE PAGES
	Slide 32: HUGE PAGES
	Slide 33: TRANSPARENT HUGE PAGES
	Slide 34: TRANSPARENT HUGE PAGES
	Slide 35: MYSQL APPROXIMATE LRU-K
	Slide 36: MYSQL APPROXIMATE LRU-K
	Slide 37: MYSQL APPROXIMATE LRU-K
	Slide 38: MYSQL APPROXIMATE LRU-K
	Slide 39: MYSQL APPROXIMATE LRU-K
	Slide 40: YELLOWBRICK: SCHEDULER
	Slide 41: YELLOWBRICK: DEVICE DRIVERS

	Conclusion
	Slide 42: BENCHMARK
	Slide 43: PARTING THOUGHTS
	Slide 44: PARTING THOUGHTS
	Slide 45: NEXT CLASS


