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15-721 (Spring 2024)

ADMINISTRIVIA

Project:
→ Final Presentations: Thursday May 2nd @ 9:00am
→ See Piazza@59 for more information.

Final Exam:
→ Given in class on Wednesday April 24th 
→ Due on the same day as Final Presentation

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2024
https://piazza.com/class/lr54wb70qmi5t/post/59


15-721 (Spring 2024)

LAST CLASS

DuckDB Embedded OLAP DBMS
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HISTORICAL CONTEXT

Most DBMSs are designed for off-the-shelf 
hardware. But some vendors sell a complete 
solution ("appliance") where the DBMS is 
optimized for a specific hardware configuration.
→ Companies also fab custom database accelerators too.

Yellowbrick started off as a high-end OLAP 
appliance…
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YELLOWBRICK (2014)

OLAP DBMS written on C++ and derived from a 
hardfork of PostgreSQL v9.5.
→ Uses PostgreSQL's front-end (networking, parser, catalog) 

to handle incoming SQL requests.

Originally started as an on-prem appliance with 
FPGA acceleration. Switched to DBaaS in 2021.

Cloud-version uses Kubernetes for all components.
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CIDR 2024
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YELLOWBRICK

Shared-Disk / Disaggregated Storage

Push-based Vectorized Query Processing

Transpilation Query Codegen (C++)

Compute-side Caching

Separate Row + PAX Columnar Storage

Sort-Merge + Hash Joins

PostgreSQL Query Optimizer++

Insane Systems Engineering
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YELLOWBRICK: ARCHITECTURE

Data Warehouse Instance:
→ Front-end service that manages connections, parsing, plan 

caching, row store, meta-data, and concurrency control.

Worker Nodes:
→ Responsible for query execution, managing compute 

hardware, and maintaining local cache.

Background / Maintenance Nodes:
→ Compilation, Bulk Loading
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YELLOWBRICK: ARCHITECTURE
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Object Store

Source: Mark Cusack

Worker Nodes

Compiler
Service

Bulk Loader Service

Row-Store

Scheduler
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YELLOWBRICK: ARCHITECTURE
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YELLOWBRICK: ARCHITECTURE

Based on a microsevice architecture where all 
components run as Docker pods in Kubernetes.
→ Kubernetes handles system state management, scalability, 

and provisioning.
→ Hides all Kubernetes operations behind SQL (!!!).   

Assigns one worker pod per worker node to 
guarantee exclusive access to hardware.
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YELLOWBRICK: QUERY EXECUTION

Pushed-based vectorized query processing that 
supports both row- and columnar-oriented data 
with early materialization.
→ Introduces transpose operators to convert data back and 

forth between row and columnar formats.

Holistic query compilation via source-to-source 
transpilation.

Yellowbrick's architecture goal is for workers to 
always process data residing in the CPU's L3 cache 
and not memory.
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YELLOWBRICK: QUERY COMPILATION

Split query plan into independent fragments and 
then transpile each fragment into C++ source code.

Dedicated compilation service uses LLVM to 
compile each fragment into machine code.
→ Use separate threads to compile fragments and then stitch 

them back together at runtime with dynamic linking.

Compiler service maintains a fragment cache to 
reduce compilation costs.
→ Tracks engine version and other dependencies.
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YELLOWBRICK: QUERY OPTIMIZER

Heavily modified version of PostgreSQL's stratified 
optimizer to do support zone map filtering.

Yellowbrick's main addition is a cost-based join 
order selection using statistics collected from row-
store compaction and ANALYZE passes over data.
→ Histograms, HyperLogLog, HeavyHitters

Supports sideways information passing of Bloom 
filters for hash joins.
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YELLOWBRICK: STORAGE

Yellowbrick only supports managed storage based 
on its proprietary file format.
→ Can specify sharding / local-sorting attribute per table.
→ ~100MB files with 2MB chunks.
→ Supports bulk loading Parquet files with some limitations.

Maintains row-store data in front-end and 
columnar data in object store.
→ Background task to move row-store data to columnar files.
→ Also supports compaction of modified columnar files.
→ DBMS bulk loads to object store in columnar files, 

bypassing row-store and worker SSD caches.
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YELLOWBRICK: SHARDING

The DBMS assigns data files to 
workers using Rendezvous Hashing. 
→ Also used in Druid and Ignite.

For each file, generate a hash value for 
each worker by concatenating the 
worker's identifier to the hashed key.

Pick the hash value with the highest 
weight.
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OBSERVATION

Remember that the OS is our enemy.

What can a DBMS implement for itself if it wants 
to ensure that it never has to talk to the OS after 
starting up?
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YELLOWBRICK: OS OPTIMIZATIONS

Memory Allocator

Thread Scheduler

Device Drivers

Network Protocols

17
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YELLOWBRICK: MEMORY ALLOCATOR

Custom NUMA-aware, latch-free allocator that gets 
all the memory needed upfront at start-up
→ Using mmap with mlock with huge pages.
→ Allocations are grouped by query to avoid fragmentation.
→ Claims their allocator is 100x faster than libc malloc.

Each worker also has a buffer pool manager that 
uses MySQL-style approximate LRU-K to store 
cached data files.
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MEMORY PAGES

OS maps physical pages to virtual memory pages.

The CPU's MMU maintains a TLB that contains the 
physical address of a virtual memory page.
→ The TLB resides in the CPU caches.
→ It cannot obviously store every possible entry for a large 

memory machine. 

When you allocate a block of memory, the allocator 
keeps that it aligned to page boundaries.
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HUGE PAGES

Instead of always allocating memory in 4 KB pages, 
Linux supports creating larger pages (2MB to 1GB)
→ Each page must be a contiguous blocks of memory.
→ Greatly reduces the # of TLB entries

Recent research from Google suggests that huge 
pages improved their data center workload by 7%.
→ 6.5% improvement in Spanner's throughput

Huge Pages makes sense in an OLAP DBMS that is 
accessing large read-only data blocks at a time.

20
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WARNING: THIS IS DATABASE CANCER

TRANSPARENT HUGE PAGES

With Transparent Huge Pages (THP), the OS 
reorganizes and compacts pages in the background.
→ Split larger pages into smaller pages.
→ Combine smaller pages into larger pages.
→ Can cause the DBMS process to stall on memory access.

Nearly every DBMS advises to disable THP:
→ Oracle, SingleStore, NuoDB, MongoDB, Sybase, TiDB.
→ Vertica says to enable THP only for newer Linux distros.
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MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two 
entry points ("old" vs "young").
→ New pages are always inserted to the head 

of the old list.
→ If pages in the old list is accessed again, 

then insert into the head of the young list.
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YELLOWBRICK: SCHEDULER

Custom cooperative multi-tasking thread scheduler 
(coroutines) that synchronizes every 100ms with a 
centralized cluster scheduler.

Only one query executes at a time in a cluster. All 
cores on the same worker execute the same task at 
the same time.
→ The goal is to ensure that cores are processing recently 

arrived data in L3 instead of memory.
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YELLOWBRICK: DEVICE DRIVERS

Custom NVMe / NIC drivers that run 
in user-space to avoid memory copy 
overheads.
→ Falls back to Linux drivers if necessary.

Custom reliable UDP network 
protocol with kernel-bypass (DPDK) 
for internal communication.
→ Each CPU has its own receive/transmit 

queues that it polls asynchronously.
→ Only sends data to a "partner" CPU at 

other workers.
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BENCHMARK
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PARTING THOUGHTS

Yellowbrick's systems engineering street skills are 
ridiculously impressive.
→ If building it today, you should probably use eBPF instead 

of DPDK.

But remember that all these optimizations will not 
matter if the DBMS chooses crappy query plans.

26
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NEXT CLASS

Last lecture: Amazon Redshift
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